• 제목/요약/키워드: beam position

검색결과 952건 처리시간 0.025초

A Study on the Position Control of Flexible Robot Beam Using Neural Networks (신경회로망을 이용한 유연한 로보트 빔의 위치제어에 관한 연구)

  • 탁한호;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • 제21권1호
    • /
    • pp.109-118
    • /
    • 1997
  • In this paper, applications of multilayer neural networks to control of flexible robot beam are considered. The multilayer nerual networks can be used to approximate any continuous function to a desired degree of accuracy and the weights are updated by Gradient Method. When a flexible beam is rotated by a motor through the fixed end, transverse vibration may occur. The motor torque should be controlled insuch a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipulators so that is arrested as soon as possbile at the end of rotation. Accurate control of lightweight beam during the large changes in configuration common to robotic tasks requires dynamic models that describe both rigid body motions, as well as the flexural vibrations. Therefore, a linear dynamic state-space model of for a single link flexible robot beam is derived and PD controller, LQP controller, and inverse dynamical neural networks controller are composed. The effectiveness the proposed control system is confirmed by computer simulation.

  • PDF

Experiments on Dynamic Response of an Elastically Restrained Beam under a Moving Mass (이동질량에 의한 탄성 지지된 보의 동적응답 실험)

  • 이종원;류봉조;이규섭;김효준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.275-280
    • /
    • 2003
  • This paper discusses on the dynamic responsed of an elastically restrained beam under a moving mass of constant velocity. Governing equations of motion taking into account of all inertia effects of the moving mass were derived by Galerkin's mode summation method, and Runge-Kutta integration method was applied to solve the differential equations. Numerical solutions for dynamic deflections of beams were obtained for the changes of the various parameters (spring stiffness, spring position, mass ratios and velocity ratios of the moving mass). In order to verify the numerical predictions for the dynamic response of the beam, experiments were conducted. Numerical solutions for the dynamic responses of the test beam have a good agreement with experimental ones.

  • PDF

Constant Velocity Revolution of an Unknown Load Using a Balance Beam Controller (밸런스빔을 이용한 미지부하 정속도 회전)

  • Kim, Yong-Jun;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2227-2229
    • /
    • 2003
  • Using the gyro effect, Balance Beam Controller is developed with Samsung Corporation. Balance Beam Controller is possible to control the position of an object in air by controlling the attitude of inner gimbal. But in the unknown load inertia case, even a skilled worker it is not easy to operate a Balance Beam. That is caused by the difficulty to estimate the load inertia. If the amount of the gimbal operation is set excessively with a wrong load estimation, it can often cause accidents. To solve this problem, the control function which is revolving with velocity of the revolution has to be added to developed equipment. In this research, we analyze the characteristics of a Balance Beam(the smaller load inertia, the bigger force of restitution) using the angular velocity sensor, and present constant velocity revolving controller with estimating value of the load using this moving characteristics.

  • PDF

Analysis of Particle Collision on a Rotating Cantilever Beam Having a Concentrated Mass (집중 질량을 가진 회전하는 외팔 보의 질점 충돌 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.714-714
    • /
    • 2005
  • This paper presents the modeling and impact analysis for a rotating cantilever beam having a concentrated mass. The concentrated mass takes an impact force during the rotating motion and the transient response of the beam induced by the impact is calculated by applying the Rayleigh-Ritz assumed mode method. The stiffness variation effect caused by the rotating motion is considered in this modeling. The effects of the concentrated mass size, impact position and the angular velocity of the beam on the transient responses are investigated through numerical studies.

  • PDF

Reduction of the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion (병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감 방법)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제18권1호
    • /
    • pp.3-10
    • /
    • 2008
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a single-degree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the shock response spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

Design, construction, and characterization of a Prompt Gamma Neutron Activation Analysis (PGNAA) system at Isfahan MNSR

  • M.H. Choopan Dastjerdi;J. Mokhtari;M. Toghyani
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4329-4334
    • /
    • 2023
  • In this research, a prompt gamma neutron activation analysis (PGNAA) system is designed and constructed based on the use of a low power research reactor. For this purpose, despite the fact that this reactor did not include beam tubes, a thermal neutron beam line is installed inside the reactor tank. The extraction of the beam line from inside the tank made it possible to provide the neutron flux from the order of 106 n.cm-2.s-1. Also, because the beam line is installed in a tangential position to the reactor core, its gamma level has been minimized. Also, a suitable radiation shield is considered for the detector to minimize the background radiation and prevent radiation damage to the detector. Calculations and measurements are done in order to characterize this system, as well as spectrometry of several samples. The results of evaluations and experiments show that this system is suitable for performing PGNAA.

Automatic Landing System using a Trajectory of Laser Beam (레이저 빔 궤적을 이용한 강인한 랜딩 시스템)

  • Hwang, Jin-Ah;Nam, Gi-Gun;Lee, Jang-Myung
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.339-341
    • /
    • 2006
  • This paper proposes a method of container position measurement using automatic landing system that is estimated by a laser range finder. In the most of container position measurement methods, CCD cameras or laser scanners have been used to get the source data. However those sensors are not only weak for disturbances, for examples, the light, fog, and rain, but also the system cost is high. When the spreader arrives the goal position, it is still swung by inertia or by wind effect. In this paper, the spreader swung data have been used to find the container position. The laser range finder is equipped in the front side of spreader. It can measure distance and relative position between spreader and container. This laser range finder can be rotated as desired by a motor. And a tilt sensor is equipped on the spreader to measure spreader sway. We estimate the relative position information between the spreader and a container using the laser range finder and tilt sensor through the geometrical analysis.

  • PDF

Dynamic plastic response of a hinged-free beam subjected to impact at an arbitrary location along its span

  • Zhang, Y.;Yang, J.L.;Hua, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.611-624
    • /
    • 2002
  • In this paper, a complete solution is presented for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is simply supported or hinged and the other end free, subjected to a transverse strike by a travelling mass at an arbitrary location along its span. The governing differential equations are expressed in non-dimensional forms and solved numerically to obtain the instantaneous deflection of the beam and the plastic dissipated energy in the beam. The dynamic behavior for a hinged-free beam is more complicated than that of a free-free beam. It transpires that the mass ratio and impact position have significant influence on the final deformation. In the aspect of energy dissipation, unlike simply supported or clamped beams for which the plastic deformation consumes almost the total input energy, a considerable portion of the input energy would be transferred as rigid-body motion of hinged-free beam, and the energy dissipated in its plastic deformation is greatly reduced.

Effect of the Off-axis distance of the Electron Emitting Source in Micro-column (마이크로 칼럼의 전자 방출원 위치 오차의 영향)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • 제9권1호
    • /
    • pp.17-21
    • /
    • 2010
  • Currently miniaturized electron-optical columns find their way into electron beam lithography systems. For better lithography process, it is required to make smaller spot size and longer working distance. But, the micro-columns of the multi-beam lithography system suffer from chromatic and spherical aberration, even when the electron beam is exactly on the symmetric axis of the micro-column. The off-axis error of the electron emitting source is expected to become worse with increasing off-axis distance of the focusing spot. Especially the electron beams far from the system optical axis have a non-negligible asymmetric intensity distribution in the micro-column. In this paper, the effect of the off-axis e-beam source is analyzed. To analyze this effect is to introduce a micro-column model of which the e-beam emitting source is aligned with the center of the electron beam by shifting them perpendicular to the system optical axis. The presented solution can be used to analysis the performance of the multi-electron-beam system. The performance parameters, such as the working distances and the focusing position are obtained by the computational simulations as a function of the off-axis distance of the emitting source.

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • 제9권5호
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF