• 제목/요약/키워드: beam position

검색결과 946건 처리시간 0.024초

Age-stratified analysis of temporomandibular joint osteoarthritis using cone-beam computed tomography

  • Hee-Jeong Song;Hang-Moon Choi;Bo-Mi Shin;Young-Jun Kim;Moon-Soo Park;Cheul Kim
    • Imaging Science in Dentistry
    • /
    • 제54권1호
    • /
    • pp.71-80
    • /
    • 2024
  • Purpose: This study aimed to evaluate age-stratified radiographic features in temporomandibular joint osteoarthritis using cone-beam computed tomography. Materials and Methods: In total, 210 joints from 183 patients(144 females, 39 males, ranging from 12 to 88 years old with a mean age of 44.75±19.97 years) diagnosed with temporomandibular joint osteoarthritis were stratified by age. Mandibular condyle position and bony changes (flattening, erosion, osteophytes, subchondral sclerosis, and subchondral pseudocysts in both the condyle and articular eminence, thickening of the glenoid fossa, joint space narrowing, and joint loose bodies) were evaluated through cone-beam computed tomography. After adjusting for sex, the association between age groups and radiographic findings was analyzed using both a multiple regression model and a multinomial logistic regression model(α=0.05). Results: The prevalence of joint space narrowing and protruded condyle position in the glenoid fossa significantly increased with age (P<0.05). The risks of bony changes, including osteophytes and subchondral pseudocysts in the condyle; flattening, erosion, osteophyte, and subchondral sclerosis in the articular eminence; joint loose bodies; and thickening of the glenoid fossa, also significantly rose with increasing age (P<0.05). The number of radiographic findings increased with age; in particular, the increase was more pronounced in the temporal bone than in the mandibular condyle (P<0.05). Conclusion: Increasing age was associated with a higher frequency and greater diversity of bony changes in the temporal bone, as well as a protruded condyle position in the glenoid fossa, resulting in noticeable joint space narrowing in temporomandibular joint osteoarthritis.

자기계측 기능을 이용한 압전 빔의 잔류진동 제어 (Residual Vibration Suppression of a Piezoelectric Beam Using a Self-sensing Technology)

  • 남윤수;장후영;박종수
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with a problem of vibration suppression of a piezoelectric beam using a self-sensing algorithm. Two methods, which are PPF(positive position feedback) and SRF(strain rate feedback), are considered to suppress a residual vibration of a piezoelectric beam developed during the step positioning of a beam end point. A self-sensing algorithm treated here is basically a strain rate estimator of a beam movement and is to be used for the closed loop control. The efficacy of the proposed idea is evaluated through experiments.

이동질량과 크랙을 가진 단순지지 보의 동특성에 관한 연구 (A Study on the Dynamic Behavior of a Simply Supported Beam with Moving Masses and Cracks)

  • 윤한익;손인수;조정래
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.47-52
    • /
    • 2003
  • To determine the effect of transverse open crack on the dynamic behavior of simply-supported Euler-Bernoulli beam with the moving masses, an iterative modal analysis approach is developed. The influence of depth and position of the crack in the beam, on the dynamic behavior of the simply supported beam system, have been studied by numerical method. The cracked section is represented by a local flexibility matrix, connecting two undamaged beam segments that is, the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section, and is derived by applying a fundamental fracture mechanics theory. As the depth of the crack is increased, the mid-span deflection of the simply-supported beam, with the moving mass, is increased. The crack is positioned in the middle point of the pipe, and the mid-span defection of the simply-supported pipe represents maximum deflection.

Analysis of natural frequencies of delaminated composite beams based on finite element method

  • Krawczuk, M.;Ostachowicz, W.;Zak, A.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.243-255
    • /
    • 1996
  • This paper presents a model of a layered, delaminated composite beam. The beam is modelled by beam finite elements, and the delamination is modelled by additional boundary conditions. In the present study, the laminated beam contains only one delaminated region through the thickness direction which extends to the full width of the beam. It is also assumed that the delamination is open. The influence of the delamination length and position upon changes in the bending natural frequencies of the composite laminated cantilever beam is investigated.

금속 슬릿 주변에 유전체 chirped grating을 배열함으로써 구현한 beam focusing (Beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings)

  • 김세윤;박정현;임용준;김휘;이병호
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2007년도 하계학술발표회 논문집
    • /
    • pp.255-256
    • /
    • 2007
  • We propose a novel method for the beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. In the proposed method, the period of each grating is chirped to make a focused beam at the desired position. Design of the grating structures for optimal beam focusing and the analysis of the field distribution are conducted based on the rigorous coupled wave analysis (RCWA). It is shown that the focused beam is formed at 1.5${\mu}m$ from the metal substrate and its full width at half maximum (FWHM) is 411nm.

  • PDF

충격력을 받는 회전하는 외팔 보의 동적 해석 (Dynamic Analysis of an Impulsively Forced Rotating Cantilever Beam)

  • 임홍석;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.226-232
    • /
    • 2006
  • This paper presents the dynamic analysis of an impulsively forced rotating cantilever beam with rigid body motion. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling with the Rayleigh-Ritz assumed mode methods. The stiffness variation effect due to the rigid body motion of the beam is considered in this study Also, the effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical works.

이동질량과 등분포종동력이 단순보의 진동에 미치는 영향 (Influence of a Moving Mass on Dynamic Behavior of Simple Beam Subjected to Uniformly Distributed Follower Forces)

  • 유진석;윤한익;최창수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.701-705
    • /
    • 2000
  • On the dynamic behavior of a simple beam subjected to an uniformly distributed tangential follower force, the influences of the velocities and magnitudes of a moving mass have been studied by numerical method. The instant amplitude of a simple beam is calculated and analyzed for each position of the moving mass represented by the time functions. The uniformly distributed tangential follower force is considered in its critical value of a simple beam, and four values of velocity is also chosen. Their coupling effects on the deflections of a simple beam are inspected too. When a moving mass moves after middle zone of a simple beam at the low velocities, its deflection is increased by the coupling of an uniformly distributed tangential follower force and moving mass.

  • PDF

Diagnostic Instruments of PLS-II

  • 김창범;김도태;최재영;이흥수;박응수;신승환;황정연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.527-527
    • /
    • 2012
  • In the Pohang Light Source (PLS), a major upgrade (PLS-II) of existing machine had been performed in last 3 years. Big improvements in beam parameters are expected from this major upgrade and various diagnostic instruments were installed to measure them. These include beam position monitor, beam current monitor, tune monitor, scraper, beam loss monitor, photon beam monitor, beam size monitor, streak camera, and so on. In this work, we would like to briefly introduce diagnostic instruments of the PLS-II and present measurement results in the commissioning process of the PLS-II.

  • PDF

이동질량의 속도가 등분포종동력을 받는 단순보의 동특성에 미치는 영향 (Influence of a the Velocity of Moving Mass on Dynamic Behavior of Simple Beam Subjected to Uniformly Distributed Follower Forces)

  • 윤한익;임순홍
    • 동력기계공학회지
    • /
    • 제4권4호
    • /
    • pp.65-69
    • /
    • 2000
  • On the dynamic behavior of a simple beam subjected to an uniformly distributed tangential follower force, the influences of the velocities and magnitudes of a moving mass have been studied by numerical method. The instant amplitude of a simple beam is calculated and analyzed for each position of the moving mass represented by the time functions. The uniformly distributed tangential follower force is considered within its critical value of a simple beam, and four values of velocity is also chosen. Their coupling effects on the deflections of a simple beam are inspected too. When a moving mass moves after middle zone of a simple beam at the low velocities, its deflection is increased by the coupling of an uniformly distributed tangential follower force and moving mass.

  • PDF

Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

  • Nguyen, Dinh-Kien;Gan, Buntara S.;Trinh, Thanh-Huong
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.727-743
    • /
    • 2014
  • Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.