• 제목/요약/키워드: beam members

검색결과 719건 처리시간 0.022초

Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs

  • Yurdakul, Ozgur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.521-543
    • /
    • 2015
  • Depending on the damage type as well as the level of damage observed after the earthquake, certain measures should be taken for the damaged buildings. In this study, structural repairing of two different types of damaged RC beam-column assembly by carbon fiber-reinforced polymer sheets is investigated in detail as a member repairing technique. Two types of 1:1 scale test specimens, which represent the exterior RC beam-column connection taken from inflection points of the frame, are utilized. The first specimen is designed according to the current Turkish Earthquake Code, whereas the second one represents a deficient RC beam-column assembly. Both of the specimens were subjected to cyclic quasistatic loading in the laboratory and different levels of structural damage were observed. The first specimen displayed a ductile response with the damage concentrated in the beam. However, in the second specimen, the beam-column joint was severely damaged while the rest of the members did not attain their capacities. Depending on the damage type of the specimens, the damaged members were repaired by CFRP wrapping with different configurations. After testing the repaired specimens, it is found that former capacities of the damaged members were mostly recovered by the application of CFRPs on the damaged members.

합성 PC 라멘조를 위한 물량산출 시스템 (Quantity survey system for column-beam structure comprised of composite precast concrete members)

  • 임채연;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.48-49
    • /
    • 2014
  • Green Frame is a column-beam system that uses composite precast concrete members. Previous studies have proven this system to be not only structurally safe, constructible, and economically feasible, but also environmentally-friendly. If the computerized program is used to estimate the quantity, the result of it shall be calculated much easily, quickly and exactly than manual estimation, because precast concrete members of Green Frame has standard size and connection method between it. Therefore, this study suggest quantity survey concept for column-beam structure comprised of composite precast concrete members. Hereafter, the quantity survey of Green Frame shall be much quickly and accurate, if the system would be made based on the result of this study.

  • PDF

Study on dynamic flexural stiffness of CFST members through Bayesian model updating

  • Shang-Jun Chen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.697-712
    • /
    • 2024
  • In this paper, the dynamic flexural stiffness of concrete-filled steel tubular (CFST) members is investigated based on vibration modal testing and a Bayesian model updating procedure. To reflect the actual service states of CFST members, a 3-stage modal testing procedure is developed for 6 circular CFST beam-columns, in which the modal parameters of the specimens under varying axial load levels are extracted. In the model updating procedure, a Timoshenko beam element model is first established, in which the influence of shear deformation and rotational inertia are incorporated. Subsequently, a 2-round Bayesian model updating strategy is proposed to calculate the dynamic flexural stiffness of the specimens, which could effectively consider the influence of physical constraints in the updating process and achieve reasonably well results. Analysis of the updating results shows that with the increase of the axial load level, degradation of the flexural stiffness is significantly influenced by the load eccentricity. It shows that the cracking of the core concrete is the primary reason for the flexural stiffness degradation of CFST beam-columns. Finally, based on comparison with equations proposed by several design standards, the calculation methods for the dynamic flexural stiffness of CFST members is recommended.

Size Estimation of Concrete Structures Using the Impact Echo Method

  • Hong, Seong-Uk;Yoon, Sang-Ki;Lee, Yong-Taeg;Kim, Seung-Hun
    • Architectural research
    • /
    • 제22권1호
    • /
    • pp.23-31
    • /
    • 2020
  • This study aims to verify a method for accurately estimating the sizes of the column, slab, and beam members of concrete structures using the impact echo method, which is a nondestructive testing method. The concrete specimens are designed and fabricated with six single-layer frame specimens composed of columns, slabs, and beam members based on three strengths of 24, 30, and 40 MPa. To estimate the sizes of the members according to the member types of concrete structures, the experiment was performed using the impact echo method. As a result of estimating the sizes of the concrete column members using the impact echo method, the error rate is 2.9%. As a result of estimating the depth of the concrete beam members, the error rate is 9.7%. And, as a result of estimating the thickness of the concrete slab members, the error rate is 2.4%. These results confirmed that quality control of the members of concrete structures is possible by estimating their sizes using a non-destructive testing method.

내화피복이 생략된 합성보의 구조설계지침 제정을 위한 고찰 (Structural Design Guide Line of Composite Beam)

  • 홍원기;김진민;이경훈;박선치;김점한
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.93-98
    • /
    • 2008
  • As high rise buildings and large span spatial structures are constructed, new composite members and construction techniques are continuously developed. Wide flange steel beam can be easily constructed but the fire proofing protection is necessary and the cost is high. Nowadays environmental pollution of structures is becoming a big issue. The material of fire proofing protection is not allowed to use for structural members in several countries because it cab be a cause of environment pollution. Composite beam is a new hybrid beam system which is not needed a fire proofing protection process. Composite beam has better construction capacity than that of RC system and has more economic advantages than that of wide flange steel beam. In this paper, structural design guide lines of composite beam were provided to apply design and construction.

이축인장압축장이론에 기반한 PSC보의 전단변형 (Shear Deformation based on the Biaxial Tension-Compression Theory in Prestressed Concrete Members applied by Axial Loading)

  • 정제평;김대중;모귀석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.281-284
    • /
    • 2006
  • ASCE-ACI Committee 426 and 445, on Shear and Torsion, well noted in their report that recent research work regarding shear and torsion had been devoted primarily to members. But it was not logical approach of PSC members applied by axial force based on the shear deformation in web element. And it was not included that the effect of axial is to shift the shear strain(or crack width) in the web element versus the applied shear curve up or down by the amount by which the biaxial tension-compression state varies. The shear strength also increases or decreases, so that the change in shear strain at service load due to the presence of axial load is to some extent changed. Generally, in corresponding beams the shear strain at service load is less in the beam subject to axial compression and greater in the beam subject to axial tension, than in the beam without axial load. In particular, however, no research were available on the shear deformation in shear of PSC members with web reinforcement, subject to axial force in addition to shear and bending. Therefore, this study was basically performed to develop the program for the calculation of the shear deformation based on the shear effect of axial force in prestressed concrete members.

  • PDF

외부 프리스트레스트 콘크리트 2경간 연속보의 휨 실험 (An Experiment of the Externally Prestressed 2-span Concrete Beam)

  • 오승현;이상우;강원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.313-316
    • /
    • 2006
  • Externally prestressed structures have many advantages such as easy prestressing control and visible maintenance. Flexural strength of externally prestressed concrete members can be calculated by analysis of internal indeterminacy, which is different from internally prestressed concrete members. However, it needs nonlinear analysis considering member stiffness at strength limit state. Thus most of design codes proposed approximate methods which are empirical, based on test results. To reduce difference between accurate analysis and approximate design methods, many experiments and studies are continued. Since most of the experiments are single span beams. In order to adapt of continuous beam it needs further investigation for the continuous beam. In this study, we carried out externally prestressed 2-span concrete beam test to find out the flexural behavior and strength of externally prestressed concrete members.

  • PDF

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

축방향 압축력을 받는 인발성형부재의 좌굴해석 (Buckling Analysis of Pultruded Members under Axial Compression)

  • 이승식;백성용
    • 한국강구조학회 논문집
    • /
    • 제18권5호
    • /
    • pp.615-624
    • /
    • 2006
  • 본 논문에서는 부재의 lay-up에 상관없이 사용할 수 있으며 복합재료 부재의 거동에 중요한 영향을 미치는 포아송 효과를 고려할 수 있는 확장된 복합재료 보이론을 제시하고, 확장된 보이론을 바탕으로 축방향 압축력을 받는 복합재료 박판부재의 좌굴식을 유도하였다. 유도된 좌굴식을 검증하기 위해서 기존에 발표된 인발성형 vinylester/E-glass 및 polyester/E-glass T형 부재의 휨-비틀림 좌굴실험결과와 vinylester/E-glass H형 부재의 휨 좌굴실험결과를 수치예제로 사용하였다. 이론적 좌굴하중과 실험적 좌굴하중 및 유한요소해석 결과와의 비교를 통하여 본 연구에서 제안된 좌굴식이 인발성형부재의 좌굴하중을 7% 정도 안전측으로 예측하는 것을 알 수 있었다.