• Title/Summary/Keyword: beam hardening

Search Result 213, Processing Time 0.035 seconds

Flexural Analysis of HPFRCC Beam Considering Multiple Cracks (다중균열분산특성을 고려한 HPFRCC부재의 휨해석)

  • Jang, Kyu-Hyeun;Shin, Kyung-Joon;Shin, Yong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.369-372
    • /
    • 2006
  • In this paper, analysis method of HPFRCC is proposed as predicting properties flexural behavior. For analyzing HPFRCC beam, properties of strain-hardening, multiple cracking, and crack spacing control are considered as non-homogeneous material properties of the beam. This paper focused on the deflection, maximum moment of the flexural beam, distribution of crack width with the monte carlo simulation.

  • PDF

Structural Performance of Flexural Dominant Reinforced Concrete Beams strengthened in Beam-Column Joint with SHCC (변형경화형 시멘트 복합체(SHCC)로 보-기둥 접합부 단면이 증설된 휨항복형 철근콘크리트 보의 구조성능)

  • Song, Seon-Hwa;Jang, Gwang-Soo;Kim, Yun-Su;Kim, Sun-Woo;Kim, Yong-Cheol;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.53-56
    • /
    • 2008
  • Reinforced concrete rahmen structures has been required ductility as well as strength of beam-column joint in seismically hazard area. Some investigations have been presented for retrofitting and/or strengthening structural elements in structure. Strain-hardening cementitious composite(SHCC) has been expected excellent reinforcement performance in beam-column joint area. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic moudulus, have great effect on the fracture behavior of SHCC. The purpose of this experimental study is to evaluate structural performance of exterior reinforced concrete beam-column joint strengthened with SHCC under cyclic loading.

  • PDF

Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator

  • Zabihzadeh, Mansour;Birgani, Mohammad Javad Tahmasebi;Hoseini-Ghahfarokhi, Mojtaba;Arvandi, Sholeh;Hoseini, Seyed Mohammad;Fadaei, Mahbube
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1685-1689
    • /
    • 2016
  • Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.

The Surface Hardening Characteristics of Hot work Tool Steel by CW Nd:YAG Laser (CW Nd:YAG 레이저에 의한 열간금형 공구강의 표면경화특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.219-220
    • /
    • 2006
  • Laser surface hardening technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for mold parts. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface hardening for the case of SKD61 steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 740 Hv when the power, focal position and the travel of laser are 1,095 W, +1mm and 0.3 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

  • PDF

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.

Shear Strength and Design of HPFRCCs Coupling Beam with Diagonal Reinforcement (대각 보강된 HPFRCCs 커플링 보의 전단강도 및 설계)

  • Park, Wan-Shin;Yun, Hyun-Do;Kim, Sun-Woo;Jean, Esther;Kim, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.257-260
    • /
    • 2006
  • Coupled shear walls consist of two or more in-plane walls inter-connected with coupling beams. In order to effectively resist seismic loads, coupling beams must be sufficiently stiff, strong and posses a stable load-deflection hysteretic response. Much of requirements to the civil and building structures have recently been changed in accordance with the social and economic progress. Ductility of high performance fiber reinforced cementitious composites(HPFRCCs), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress is drastically improved. This paper provides background for design guidelines that include a design model to calculate the shear strength of pseudo strain hardening cementitious composite steel coupling beam.

  • PDF

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad;Md Abdullah Al Bari;Md. Makfidunnabi;H.M. Zulqar Nain;Mehmet Emin Ozdemir;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

IBS Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames (강재 모멘트 골조의 비선형 지진 해석을 위한 IBS 보 요소)

  • Kim, Dal Sung;Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.233-242
    • /
    • 2008
  • This study presents a non-prismatic beam element for modeling the elastic and inelastic behavior of steel beams, which have the post-Northridge(cover plate) connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatric members with increased beam section (IBS) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Moreover the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for IBS beam element were described. Analytical results of the IBS beam element show good correlation with test data and FEM results.

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF