• Title/Summary/Keyword: beam finite element model

Search Result 938, Processing Time 0.025 seconds

Evaluation of Moment Transfer Efficiency of a Beam Web at RHS Column-to-Beam Connections (RHS기둥-보 접합부의 모멘트전달효율 평가)

  • Kim, Young-Ju;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.67-76
    • /
    • 2006
  • In this paper the moment transfer efficiency of a web and the strain concentration at the RHS (Rectangular Hollow Section) column-to-steel beam connections was evaluated. Initially, non-linear finite element analysis of five bare steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed that the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide Flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of the steel beam-to-column connections. Analytical results were compared with the previous experimental results. The analytical and the previous experimental results showed that the strain concentration was inversely proportional to the moment transfer efficiency of a beam web and the deformation capacity of connection was poor as their moment transfer efficiency degrades. Further finite element analyses of composite beam with a floor slab revealed that the neutral axis moved toward the top flange and the moment transfer efficiency of a beam web decreased, which led to premature failure of the connection.

Explicit Nonlinear Finite Element Analysis for Flexural/Shear Behavior of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 휨/전단거동에 관한 외연적 비선형 유한요소해석 연구)

  • Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.771-776
    • /
    • 2020
  • In this study, the flexural/shear behavior characteristics of perfobond FRP-concrete composite beams using an FRP plate with perforated webs as formwork and reinforcement are analyzed through an analytical method. Compared with the existing experimental results, we have proved its usefulness and use it in future practice. When the nonlinearity is very large in this case, the nonlinear finite element analysis by an explicit method will be effective. The concrete damage plasticity (CDP) model adopted in this study is considered to be able to adequately simulate the nonlinear behavior of concrete, and the determination of several variable factors required in the model is compared with the experimental results and values used in the study. This recommendation will require review and adjustment for more diverse cases. The effect of the perfobond of the composite beam with perforated web is considered to be somewhat effective in terms of securing the initial stiffness, but in the case of the apex, it is considered that the cross-sectional loss and the effect of improving the bonding force should be properly arranged. The contact problem, such as slipping of the FRP plate and concrete, is considered to be one of the reasons that the initial stiffness is slightly larger than the test result, and the slightly difference from the experimental results is attributed to the separation problem between concrete and FRP after the peak.

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

Behavior of concrete-filled round-ended steel tubes under bending

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.457-472
    • /
    • 2017
  • The objective of this paper is to investigate the flexural behavior of concrete-filled round-ended steel tubes (CFRTs) under bending. Beam specimens were tested to investigate the mechanical behavior of the CFRTs, including four CFTs with different concrete strengths and steel ratios, and three CFRTs with varied aspect ratios. The load vs. deflection relationships and the failure modes for CFRTs were analyzed in detail. The composite action between the core concrete and steel tube was also discussed and examined based on the experimental results. In addition, ABAQUS program was used to develop the full-scale finite element model and analyze the effect of different parameters on the moment vs. curvature curves of the CFRTs bending about the major and minor axis, respectively. Furthermore, design formulas were proposed to estimate the ultimate moment and the flexural stiffness of the CFRTs, and the simplified theoretical model of the moment vs. curvature curves was also developed. The predicted results showed satisfactory agreement with the experimental and FE results. Finally, the differences of the experimental, FE and predicted results using the existing codes were illustrated.

The Effective Young's Modulus of Model Ice Sheet in Ice Basin (빙해수조 모형빙판의 유효탄성계수 산출)

  • Lee, Jae-Hwan;Choi, Bong-Kyun;Kim, Tae-Wan;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.315-322
    • /
    • 2015
  • In this paper, the theory of rectangular plate on the elastic foundation is used to get the relation equation between the effective Young’s modulus and the ice sheet deflection by applying the characteristic length concept, since the model ice sheet is rectangular shape in KRISO (Korea Research Institute for Ships and Ocean Engineering) ice basin. The obtained relation equation is equal to that of using the circular plate theory. A device is made and used to measure the deflection of ice plate using LVDT (Linear Variable Differential Transformer) for several loading cases and the procedure of experiments measuring the deflection used for getting the Young’s modulus is explained. In addition, the flexural strength value obtained through flexural strength experiments is compared with that of finite element analysis using the obtained effective Young’s modulus. Also, a nonlinear FEA (Finite Element Analysis) of cantilever ice beam is done with eroding effect and LS-DYNA result shows the fracture of brittle ice under 1 mm/s velocity load.

Development of Shaft Analysis Model for Power Transmission System Optimization (동력전달 시스템의 최적화를 위한 축 해석 모델 개발)

  • Lee, Ju-Yeon;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.8-16
    • /
    • 2021
  • This study develops a shaft analysis model for the optimization of the power transmission system. The finite element method was used for the shaft analysis model. The shaft and gear were assumed Timoshenko beams. Strength was evaluated according to DIN 743, and gear misalignment was calculated through ISO 6336 and the coordinate system rotation. The analysis software for a power transmission system was developed using Visual Studio 2019. The analysis results of the developed program were compared with those of commercial software (MASTA, KISSsoft, and Romax). We confirmed that the force, deformation, and safety factors at each node were the same as those of the commercial software. The absolute value of the gear misalignment of the developed program and commercial software was different. However, the gear misalignment tended to increase with increasing the displacement in the tooth width direction.

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi;Kanat Burak Bozdogan
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.353-364
    • /
    • 2023
  • In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.

Structure Evaluation for the Level Luffing Crane' Boom (레벨 러핑 크레인 붐에 대한 구조설계의 건전성 평가)

  • Kim, Min-Saeng;Lee, Jae-Chul;Jeong, Suk-Yong;Ahn, Sung-Hoon;Son, Jee-Won;Cho, Kwang-Je;Song, Chul-Ki;Park, Sil-Ryong;Bae, Tae-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.526-532
    • /
    • 2008
  • Structure evaluation for 70/15 $T{\times}105\;m$ LLC(Level Luffing Crane)'s boom was conducted by Finite Element Method. Boom modeled with beam element was fixed by luff rope and boom mount and was received loads from self weight, luff hoisting, traveling motion, slewing motion, and wind force, etc. These applied loads were calculated using various factors presented in the reference standards and were inputted in the analysis model after considering about the adverse conditions of LLC. In the research, deformation, stresses, buckling of boom were evaluated by ANSYS. Structural safety of boom was confirmed in the results of numerical analysis.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Crack identification in short shafts using wavelet-based element and neural networks

  • Xiang, Jiawei;Chen, Xuefeng;Yang, Lianfa
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.543-560
    • /
    • 2009
  • The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval (BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by non-dimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model of rotor system is constructed to solve the first three natural frequencies functions of normalized crack location and depth. The normalized crack location, normalized crack depth and the first three natural frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis. Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.