• Title/Summary/Keyword: beacon collision

Search Result 32, Processing Time 0.021 seconds

Tuning Backoff Period for Enhancing System Throughput with Estimating Number of Devices in IEEE 802.15.4 Slotted CSMA/CA (IEEE 802.15.4 슬롯 기반 CSMA/CA에서 시스템 처리율 향상을 위한 단말 수 추정을 통한 백오프 기간 튜닝 기법)

  • Lee, Won Hyoung;Hwang, Ho Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1243-1249
    • /
    • 2018
  • In this paper, we propose a scheme that tunes the backoff period for enhancing the system throughput with estimating the number of devices in IEEE 802.15.4 slotted carrier sense multiple access with collision avoidance (CSMA/CA) networks. Since each device does not sense the channel always in IEEE 802.15.4 slotted CSMA/CA networks, a personal area network (PAN) coordinator is used to estimate the number of active devices. The PAN coordinator broadcasts an optimal backoff period for the estimated number of devices through a beacon frame. In order to estimate the number of devices in run time, a simple moving average filter is utilized. We show the performance of our proposed scheme in terms of the estimated number of devices and the system throughput. The simulation results show that our proposed scheme can obtain higher system throughput than the IEEE 802.15.4 standard.

A New Interference-Aware Dynamic Safety Interval Protocol for Vehicular Networks

  • Yoo, Hongseok;Chang, Chu Seock;Kim, Dongkyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-13
    • /
    • 2014
  • In IEEE 802.11p/1609-based vehicular networks, vehicles are allowed to exchange safety and control messages only within time periods, called control channel (CCH) interval, which are scheduled periodically. Currently, the length of the CCH interval is set to the fixed value (i.e. 50ms). However, the fixed-length intervals cannot be effective for dynamically changing traffic load. Hence, some protocols have been recently proposed to support variable-length CCH intervals in order to improve channel utilization. In existing protocols, the CCH interval is subdivided into safety and non-safety intervals, and the length of each interval is dynamically adjusted to accommodate the estimated traffic load. However, they do not consider the presence of hidden nodes. Consequently, messages transmitted in each interval are likely to overlap with simultaneous transmissions (i.e. interference) from hidden nodes. Particularly, life-critical safety messages which are exchanged within the safety interval can be unreliably delivered due to such interference, which deteriorates QoS of safety applications such as cooperative collision warning. In this paper, we therefore propose a new interference-aware Dynamic Safety Interval (DSI) protocol. DSI calculates the number of vehicles sharing the channel with the consideration of hidden nodes. The safety interval is derived based on the measured number of vehicles. From simulation study using the ns-2, we verified that DSI outperforms the existing protocols in terms of various metrics such as broadcast delivery ration, collision probability and safety message delay.

Modeling and Performance Analysis of MAC Protocol for WBAN with Finite Buffer

  • Shu, Minglei;Yuan, Dongfeng;Chen, Changfang;Wang, Yinglong;Zhang, Chongqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4436-4452
    • /
    • 2015
  • The IEEE 802.15.6 standard is introduced to satisfy all the requirements for monitoring systems operating in, on, or around the human body. In this paper, analytical models are developed for evaluating the performance of the IEEE 802.15.6 CSMA/CA-based medium access control protocol for wireless body area networks (WBAN) under unsaturation condition. We employ a three-dimensional Markov chain to model the backoff procedure, and an M/G/1/K queuing system to describe the packet queues in the buffer. The throughput and delay performances of WBAN operating in the beacon mode are analyzed in heterogeneous network comprised of different user priorities. Simulation results are included to demonstrate the accuracy of the proposed analytical model.

Beacon Collision Avoidance Mechanism for IEEE 802.15.4 Inter-PAN Communication (IEEE 802.15.4의 Inter-PAN 통신을 위한 비콘 충돌 회피 기법)

  • Lee, Woo-June;Lee, Hyuk-Joon;Park, In;Shim, Eung-Bo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.6-9
    • /
    • 2006
  • IEEE 802.15.4는 저전력 무선 개인 네트워크 기술의 표준으로서 USN(ubiquitous sensor network)의 핵심 무선 통신 기술로 각광을 받고 있다. 그러나 IEEE 802.15.4는 제한된 RF 전송범위와 스타 토폴로지를 기반으로 하는 통신 기법만을 제공하고 있으며, 인접한 PAN 간(inter-PAN)의 통신 기술은 정의되어 있지 않다. 이러한 기술상의 제약으로 IEEE 802.15.4는 통신 영역이 매우 제한적이며, 이에 따라 통신시 음영지역이 발생하는 문제점을 가지고 있다. 현재까지 통신영역 확장을 위한 주요 기술적 사항인 효율적인 토폴로지 형성방법, 주소할당 및 라우팅 방법, 인접 네트워크 간의 비콘 충돌 회피 기법 등에 대한 활발한 연구가 진행되어 왔다. 이중 인접한 네트워크간의 비콘 충돌 방지 기법은 IEEE 802.15.4의 네트워크가 비콘에 의해서 관리된다는 점을 고려하였을 때 데이터 전송 및 네트워크 유지를 위해 우선적으로 해결되어야 할 사항이다. 본 연구에서는 제안된 비콘 충돌 회피 기법을 분석하고, 이중 비활성 구간(inactive portion)을 활용한 기법에 대한 구체적인 구현 방안을 제시 하였다. 또한 상용 임베디드 장치인 Nano-24에 설계한 비콘 충돌 회피 기법을 구현하여 동작을 검증, 분석하였다.

  • PDF

Performance Analysis of IEEE 802.15.4e Time Slotted Channel Hopping for Low-Rate Wireless Networks

  • Chen, Shuguang;Sun, Tingting;Yuan, Jingjing;Geng, Xiaoyan;Li, Changle;Ullah, Sana;Alnuem, Mohammed Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 2013
  • The release of IEEE 802.15.4e specification significantly develops IEEE 802.15.4. The most inspiring improvement is the enhancement for medium access control (MAC) sublayer. To study the performance of IEEE 802.15.4e MAC, in this paper we first present an overview of IEEE 802.15.4e and introduce three MAC mechanisms in IEEE 802.15.4e. And the major concern here is the Time Slotted Channel Hopping (TSCH) mode that provides deterministic access and increases network capacity. Then a detailed analytical Markov chain model for TSCH carrier sense multiple access with collision avoidance (CSMA-CA) is presented. Expressions which cover most of the crucial issues in performance analysis such as the packet loss rate, energy consumption, normalized throughput, and average access delay are presented. Finally the performance evaluation for the TSCH mode is given and we make a comprehensive comparison with unslotted CSMA-CA in non-beacon enabled mode of IEEE 802.15.4. It can validate IEEE 802.15.4e network can provide low energy consumption, deterministic access and increase network capacity.

CDASA-CSMA/CA: Contention Differentiated Adaptive Slot Allocation CSMA-CA for Heterogeneous Data in Wireless Body Area Networks

  • Ullah, Fasee;Abdullah, Abdul Hanan;Abdul-Salaam, Gaddafi;Arshad, Marina Md;Masud, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5835-5854
    • /
    • 2017
  • The implementation of IEEE 802.15.6 in Wireless Body Area Network (WBAN) is contention based. Meanwhile, IEEE 802.15.4 MAC provides limited 16 channels in the Superframe structure, making it unfit for N heterogeneous nature of patient's data. Also, the Beacon-enabled Carrier-Sense Multiple Access/Collision-Avoidance (CSMA/CA) scheduling access scheme in WBAN, allocates Contention-free Period (CAP) channels to emergency and non-emergency Biomedical Sensors (BMSs) using contention mechanism, increasing repetition in rounds. This reduces performance of the MAC protocol causing higher data collisions and delay, low data reliability, BMSs packet retransmissions and increased energy consumption. Moreover, it has no traffic differentiation method. This paper proposes a Low-delay Traffic-Aware Medium Access Control (LTA-MAC) protocol to provide sufficient channels with a higher bandwidth, and allocates them individually to non-emergency and emergency data. Also, a Contention Differentiated Adaptive Slot Allocation CSMA-CA (CDASA-CSMA/CA) for scheduling access scheme is proposed to reduce repetition in rounds, and assists in channels allocation to BMSs. Furthermore, an On-demand (OD) slot in the LTA-MAC to resolve the patient's data drops in the CSMA/CA scheme due to exceeding of threshold values in contentions is introduced. Simulation results demonstrate advantages of the proposed schemes over the IEEE 802.15.4 MAC and CSMA/CA scheme in terms of success rate, packet delivery delay, and energy consumption.

Implementation of Road Weather Information System Supporting Intelligent Transportation Systems Based on USN (센서 네트워크 기반의 지능형 교통 시스템 지원을 위한 RWIS 구현)

  • Park, Hyun-Moon;Park, Soo-Huyn;Park, Woo-Chool;Seo, Hae-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.485-492
    • /
    • 2010
  • Intelligent Transport System(ITS) has been studied in various systems, such as road environment information offering, vehicle short-range wireless/wire communication, vehicle collision preventing and pedestrian safety offering systems. Related to this, the USN technology based on the sensing accuracy for motorists and pedestrians safety, the information reliability, the maintenance and convenience for Sensor Network is highlighted. This study uses various sensors to construct USN to the road, and connect it to the developed RSU so it collects the real-time road environment information and offers it to OBU and Traffic Control Surveillance Center with Road Weather Information System. RSU collects roadside information for driver's safety and analyzes it to offer IP and beacon service according to the service priority to OBU & upper layer terminal. In the upper layer terminal it is developed the IP based Settop Box application program to offer the urban traffic information & road environment, and environment sensor error, etc. Finally, RWIS develops the real-time collection of roadside information to complement the driver's safety to the intelligent traffic system, and presents various service modes with technology convergence.

The Safety Equipment for Small-Size Vessel (소형 선박용 안전장치)

  • Park, Chun-Kwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.69-74
    • /
    • 2017
  • These days as there are a growing vessel volume in the costal area, the marine accidents has being increased. IMO recommend that all vessels have to be equipped with the safety equipments mandatorily for the safety navigation. Almost medium and large size vessels are equipped with the safety navigational equipments, But many small size vessels are not equipped with those ones because of its owner's financial hardship or indifference. So for the safety of small size vessels in the coastal area, the marine accidents such as stranding, sinking, collision, and so on, have to be protected in advance or the occurred accidents has to be treated quickly. In this paper, the safety equipment for small size vessels having these functions has been developed. This equipment can guarantee the safety of small size vessels in defenseless state considerably by displaying these states in seamen's Smart phone or the cheap dedicated terminal and also informing the control center and nearby other vessels of these states.

Hybrid MAC Protocol Design for an Underwater Acoustic Network (수중음향통신망을 위한 하이브리드 MAC 프로토콜 설계)

  • Park, Jong-Won;Ko, Hak-Lim;Cho, A-Ra;Yun, Chang-Ho;Choi, Young-Chol;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2088-2096
    • /
    • 2009
  • This paper deals with hybrid MAC protocol design for underwater acoustic networks. The proposed MAC protocol has the cluster structure with a master node and slave nodes, and the hybrid network structure that combines a contention free period based on TDMA(Time Division Multiple Access) with a contention period. The suggested MAC protocol has a beacon packet for supervising network, a guard period between time slots for packet collision, time tag for estimation of propagation delay with a master node, the time synchronization of nodes, entering and leaving of network, and the communication method among nodes. In this paper, we adapt the proposed hybrid MAC protocol to AUV network, that is the representative mobile device of underwater acoustic network, and verify this protocol is applicable in real underwater acoustic network environment.

Adaptive Power Control based Efficient Localization Technique in Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크에서 적응적 파워 조절 기반 효율적인 위치인식 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.737-746
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose APL(Adaptive Power Control based Resource Allocation Technique for Efficient Localization Technique), the localization technique for multiple mobile nodes based on adaptive power control in mobile wireless sensor networks. In APL, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use RTS(Ready To Send) packet type for localization initiation by mobile node and CTS(Clear To Send) packet type for localization grant by anchor node. NTS(Not To Send) packet type is used to reject localization by anchor node for interference avoidance and STS(Start To Send) for synchronization between 모anchor nodes. At last, the power level of sensor node is controled adaptively to minimize the affected area. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and APL provides efficient localization.