• Title/Summary/Keyword: bcl-2 and bax

Search Result 925, Processing Time 0.03 seconds

Involvement of apoptotic signals in cyclosporin A-induced proliferation of human gingival fibroblast (사람 치은 섬유모세포에서 Cyclosporin-A 유도 세포증식에 대한 항세포고사 기전)

  • Jeong, Tea-Sul;Chung, Hyun-Ju;Kim, Won-Jae
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.731-745
    • /
    • 2005
  • Cyclosproin A(CsA)는 세포 이식거부방지를 위한 면역 억제제 및 자가 면역질환 치료제로 널리 사용되어 왔다. CsA는 매양된 사람 치은섬유아세포를 증식시킴이 알려져 있지만 CsA에 의한 세포증식기전에 대한 세포사멸기전 및 Bcl-2의 역할은 연구되어 있지 않다. 이번 연구는 사람 섬유아세포에서 CsA에 의한 세포증삭기전에 세포고사기전 및 Bcl-2 family가 관여하는지 밝히는 데에 목적이 있다. 세포 생장력은 MTT 방법으로 측정하였다. Bcl-2 family와 Fas 발현 정도는 RT-PCR 방법이나 western blot으로 확인하였다. Caspase-3 및 -9의 활성은 ELISER reader로, reactive oxygen species(ROS)는 fluorescence spectrometer에 의해 측정되었다. 미토콘드리아에서 세포질로 분비된 cytochrome c는 Western blot으로 조사하였다. CsA는 $0.1{\sim}10\;{\mu}M$에서 사람 섬유아세포의 생존률을 시간과 농도 의존적으로 증가시켰으며, 50 ${\mu}M$ CsA에서는 오히려 세포가 죽였다. 또한, CsA 처리로 미토콘드리아에서 세포질로 유리되는 cytochrome c 양과 VDAC 1 및 3 발현량이 감소되었고, caspase-9과 caspase-3의 활성도도 감소되었다. 한편, CsA 처리한 섬유아세포에서 death receptor 구성요소인 Fas 발현이 감소되었다. Bcl-2 family에 대한 RT-PCR, western blot 분석결과, 세포고사를 억제하는 Bel-2 발현은 증가되었으나 세포고사를 자극하는 Bax와 Bid의 발현은 감소되었다. 이러한 결과들은 사람 섬유아세포에서 CsA유도 세포증식에 Bcl-2 family와 ROS가 매개하는 미토콘드리아 의존 및 death receptor 의존 세포고사기전이 관여함을 시사하였다.

NDP Kinases Suppressed Bax-Dependent Apoptosis in Yeast System

  • K. C. Hwang;D. W. Ok;D. N. Kwon;H. K. Shin;Kim, J. H.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.52-52
    • /
    • 2001
  • Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic reaction follows a ping-pong mechanism in which the enzyme is transiently phosphorylated on a histidine residue conserved in all nucleoside diphosphate kinases. Beside their role in nucleotide synthesis, these enzymes present additional functions, possibly independent of catalysis, in processes such as differentiation, cell growth, tumor progression, metastasis and development. To clone murine nm23-M5, several expressed sequence tags (ESTs) of the GenBank data base, selected according to their homology to nm23-H5 cDNA, reconstituted a complete open reading frame (GenBank AF222750). To test whether murine NDPKs (1, 2, 3, 4, 5, and 6) can inhibit Bax-mediated toxicity in yeast, co-transformation was performed respectively. The yeast S.cerevisiae was transformed with a copy expression plasmid containing the histidine selection marker and expressing murine Bax under the control of a galactose-inducible promoter. Several clones were selected and found to be growth inhibited when Bax expression was induced with galactose. A representative clone was transformed again with a copy expression plasmid containing the tryptophane selection marker and expressing either murine Bcl-xL or NDPK under the control of a galactose-inducible promoter. Several subclones of the double-transformants were selected and characterized. The ability of Bcl-xL and NDPKs to suppress Bax-mediated toxicity was determined by growing yeast cells overnight in galactose media and spot-testing on galactose plates starting with an equal number of yeast cells as determined by taking the OD$_{600}$. Ten-fold serial dilutions were used in the spot-test. Plates were grown at 3$0^{\circ}C$ for 2-3 days. All murine NDPKs suppressed Bax dependent apoptosis. Futher study will be peformed whether Bax-toxicity inhibition was caused by NDP kinase activity or additional function.n.

  • PDF

The Protective Effect of Ethanol Extract of Polygalae Radix against Oxidative Stress-Induced DNA Damage and Apoptosis in Chang Liver Cells (산화적 스트레스에 의한 간세포의 DNA 손상 및 세포사멸 유도에 미치는 원지 에탄올 추출물의 보호 효과)

  • Kim, Hong Yun;Park, Cheol;Choi, Yung Hyun;Hwang, Won-Deok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Objectives: The purpose of the present study was to evaluate the preventive effects of ethanol extract of Polygalae radix (EEPR) against oxidative stress (hydrogen peroxide, $H_2O_2$)-induced DNA damage and apoptosis in Chang liver cells. Methods: Chang liver cells were pretreated with various concentrations of EEPR and then challenged with 0.5 mM $H_2O_2$. The cell viability and apoptosis were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry analysis, respectively. The levels of reactive oxygen species (ROS), mitochondrial membrane potentials (MMPs) and adenosine tri-phosphate (ATP) contents were measured. Expression levels of Bcl-2 and Bax were also determined using Western blot analysis. Results: The results showed that the decreased survival rate induced by $H_2O_2$ could be attributed to the induction of DNA damage and apoptosis accompanied by the increased production of ROS, which was remarkably protected by EEPR. In addition, the loss of $H_2O_2$-induced MMPs and ATP contents was significantly attenuated in the presence of EEPR. The inhibitory effect of EEPR on $H_2O_2$-induced apoptosis was associated with up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio. Conclusions: Our data prove that EEPR protects Chang liver cells against $H_2O_2$-induced DNA damage and apoptosis by scavenging ROS and thus suppressing the mitochondrial-dependent apoptosis pathway.

The Effect of Woohwangcheongsim-won for Delayed Neuronal Death in OGD(Oxygen-Glucose Deprivation) Model (배양 대뇌신경세포의 저당-저산소증 모델에서 우황청심원에 의한 세포사 방지 연구)

  • 원철환;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.125-139
    • /
    • 2002
  • Objectives: The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won and to study the mechanism for neuronal death protection in OGD (oxygen-glucose deprivation) model with embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods: E20 cortical cells were dissociated in neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Woohwangcheongsim-won was added to the culture media for 72 hrs. On 17 DIV, cells were given an oxygen-glucose deprivation shock (2hrs and 4hrs) and further incubated in normoxia for another three days. On 20 DIV, Woohwangcheongsim-won's effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results & Conclusions: 1. This study indicates that Woohwangcheongsim-won's effects for neuronal death protection in OGD model is confirmed by LDH assay in culture method of embryonic day 20(E20) cortical neuroblasts. 2. Woohwangcheongsim-won's mechanisms for neuronal death protection in OGD model are to restrain inflow of cytochrome c into cellularity caused by Bcl-2 increase (2hrs and 4hrs), to reduce the caspase cascade initiator caspase-8 (4hrs).

  • PDF

Research on the Anti-Breast Cancer and Anti-Inflammatory Effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum (청간해울탕(淸肝解鬱湯)과 십륙미유기음(十六味流氣飮)의 유방암에 대한 항암, 항염 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.35 no.3
    • /
    • pp.1-23
    • /
    • 2022
  • Objectives: The purpose of this study is to evaluate anti-breast cancer and anti-inflammatory effects of Chungganhaewool-tang and Shipyeukmiyeugi-eum. Methods: MDA-MB-231 cells were used to measure cytotoxicity, Reactive oxygen species (ROS) production, protein expression amounts of Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), Cytochrome C Caspase-3, Caspase-7, Caspase-9, Poly ADP-ribose polymerase (PARP), Nuclear factor erythroid-2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1) and NAD (P) H Quinone Oxidoreductase 1 (NQO1) to evaluate the anti-breast cancer effects of Chungganhaewool-tang (CHT) and Shipyeukmiyeugi-eum (SYE), and THP-1 cells, differentiated into macrophage and induced inflammation with Lipopolysaccharide (LPS), were used to measure production amounts of ROS, Nitric oxide (NO), and protein expression amounts of Inducible nitric oxide synthase (iNOS), Cyclooxygenase (COX-2), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6) and Tumor necrosis factor-alpha (TNF-α) to evaluate the anti-inflammatory effects of CHT and SYE. Results: CHT and SYE reduced MDA-MB-231 cell counts, increased protein expression of Bax and Cytochrome C, and decreased protein expression of Bcl-2, Bcl-xl. The protein expression amounts of Caspase-3, 7, and 9 decreased, but amounts of the active form, cleaved Caspase-3, 7, and 9, increased. In addition, PARP protein expression decreased, the amount of PARP protein in the cleaved form increased, and the amount of protein expressions of Nrf2 and HO-1 decreased, but NQO1 showed no significant difference. In THP-1 cells CHT and SYE reduced ROS and NO, and reduced protein expressions of iNOS, COX-2, IL-1, and TNF-α, but only SYE groups reduced IL-6. Conclusions: This study suggests that CHT and SYE have potential to be used as treatments for breast cancer.

Ginsenoside Rh2 Induces Apoptosis via Activation of Caspase-1 and -3 and Up-Regulation of Bax in Human Neuroblastoma

  • Kim, Young-Soak;Jin, Sung-Ha
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.834-839
    • /
    • 2004
  • In human neuroblastoma SK-N-BE(2) cells undergoing apoptotic death induced by ginsenos-ide Rh2, a dammarane glycoside that was isolated from Panax ginseng C. A. Meyer, caspase-1 and caspase-3 were activated. The expression of Bax was increased in the cells treated with ginsenoside Rh2, whereas Bcl-2 expression was not altered. Treatment with caspase-1 inhibi-tor, Ac-YVAD-CMK, or caspase-3 inhibitor, Z-DEVD-FMK, partially inhibited ginsenoside Rh2-induced cell death but almost suppressed the cleavage of the 116 kDa PARP into a 85 kDa fragment. When the levels of p53 were examined in this process, p53 accumulated rapidly in the cells treated early with ginsenoside Rh2. These results suggest that activation of caspase-1 and -3 and the up-regulation of Bax are required in order for apoptotic death of SK-N-BE(2) cells to be induced by ginsenoside Rh2, and p53 plays an important role in the pathways to promote apoptosis.

Neuroprotective effects of resveratrol via anti-apoptosis on hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저 산소 허혈 뇌손상에서 항세포사멸사를 통한 resveratrol의 신경보호 효과)

  • Shin, Jin Young;Seo, Min Ae;Choi, Eun Jin;Kim, Jin Kyung;Seo, Eok Su;Lee, Jun Hwa;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1102-1111
    • /
    • 2008
  • Purpose : Resveratrol, extracted from red wine and grapes, has an anti-cancer effect, an antiinflammatory effect, and an antioxidative effect mainly in heart disease and also has neuroprotective effects in the adult animal model. No studies for neuroprotective effects during the neonatal periods have been reported. Therefore, we studied the neuroprotective effect of resveratrol on hypoxic-ischemic brain damage in neonatal rats via anti-apoptosis. Methods : Embryonic cortical neuronal cell culture of rat brain was performed using pregnant Sprague-Dawley (SD) rats at 18 days of gestation (E18) for the in vitro approach. We injured the cells with hypoxia and administered resveratrol (1, 10, and $30{\mu}g/mL$) to the cells at 30 minutes before hypoxic insults. In addition, unilateral carotid artery ligation with hypoxia was induced in 7-day-old neonatal rats for the in vivo approach. We injected resveratrol (30 mg/kg) intraperitoneally into animal models. Real-time PCR and Western blotting were performed to identify the neuroprotective effects of resveratrol through anti-apoptosis. Results : In the in vitro approach of hypoxia, the expression of Bax, caspase-3, and the ratio of Bax/Bcl-2, indicators of the level of apoptosis, were significantly increased in the hypoxia group compared to the normoxia group. In the case of the resveratrol-treated group, expression was significantly decreased compared to the hypoxia group. And the results in the in vivo approach were the same as in the in vitro approach. Conclusion : The present study demonstrates that resveratrol plays neuroprotective role in hypoxic-ischemic brain damage during neonatal periods through the mechanism of anti-apoptosis.

Anti-cancer Effects of Bujeonghangam-tang on Human Neuroblastoma Cell Line LAN5 (인간 신경모세포종 세포주 LAN5에 대한 부정항암탕(扶正抗癌湯)의 항종양효과)

  • Cho, Young-Kee;Lee, Seong-Kyun;Lee, Jung-Sup;Nam, Sang-Kyu;Jeong, Hyun-Ae;Moon, Goo;Moon, Mi-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1548-1555
    • /
    • 2006
  • Bujeonghangam-tang(BHT) has been used as an anticancer agent in oriental medicine, but the mechanism by which it induces cell death in cancer cells is still unclear. To investigate cell death mechanism by BHT in cancer cells, the activities of apoptosis signaling pathway were tested in human neuroblastoma cell line LAN5. Viability of LAN5 cells was markedly decreased by treatment of the water extract of BHT in a dose-dependent manner. BHT induced cell death was confirmed as apoptosis characterized by chromatin condensation. We tested whether the water extract of BHT affects the anti-apoptotic protein such as Bcl-2 and Bcl-XL, and the pro-apoptotic protein such as Bax. Both Bcl-2 and Bcl-XL were gradually decreased but Bas was increased in a time-dependent manner after the addition of the water extract of BHT. Cleavage of Bid by activation of caspase-8 protease was also observed in LAN-5 cells by the treatment of the water extract of BHT. Taken together, these results suggest that the water extract of BHT exerts anti-cancer effects on human neuroblastoma LAN-5 cells by inducing the apoptotic death via down-regulation of anti-apoptotic proteins such as Bcl-2 and Bcl-XL, up-regulation of pro-apoptotic protein such as Bax, and activation of intrinsic caspase cascades.

Identification of Inhibitors Against BAK Pore Formation using an Improved in vitro Assay System

  • Song, Seong-Soo;Lee, Won-Kyu;Aluvila, Sreevidya;Oh, Kyoung Joon;Yu, Yeon Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.419-424
    • /
    • 2014
  • The pro-apoptotic BCL-2 family protein BID activates BAK and/or BAX, which form oligomeric pores in the mitochondrial outer membrane. This results in the release of cytochrome c into the cytoplasm, initiating the apoptotic cascade. Here, we utilized liposomes encapsulating sulfo-rhodamine at a controlled temperature to improve upon a previously reported assay system with enhanced sensitivity and specificity for measuring membrane permeabilization by BID-dependent BAK activation. BAK activation was inhibited by BCL-$X_L$ protein but not by a mutant protein with impaired anti-apoptotic activity. With the assay system, we screened a chemical library and identified several compounds including trifluoperazine, a mitochondrial apoptosis-induced channel blocker. It inhibited BAK activation by direct binding to BAK and blocking the oligomerization of BAK.

Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells

  • Qian, Jun;Li, Jing;Jia, Jian-Guang;Jin, Xin;Yu, Da-Jun;Guo, Chen-Xu;Xie, Bo;Qian, Li-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1817-1821
    • /
    • 2016
  • Objectives: To observed the effects of ginsenoside -Rh2 (GS-Rh2) on proliferation and apoptosis of side population (SP) human gastric cancer SGC-7901 cells. Materials and Methods: SGC-7901 SP and Non-SP cells were sorted by flow cytometry and assessed using the cck-8 method. Expression of apoptosis-related proteins Bax and Bcl-2 of SP before and after the intervention was determined by Western-blotting. Results: It was found that the proliferation of SP was significantly faster than that of NSP (P<0.05). In addition, GS-Rh2 inhibited proliferation of gastric cancer SP cells, induced cell cycle arrest and cell apoptosis, and changed the expression of BAX/Bcl-2 proteins in a time-dependent and concentration-dependent manner (P<0.05). Conclusions: With increase of GS-Rh2 dose, GS-Rh2 gradually inhibit the proliferation of SGC-7901 SP cells, which have high proliferation rate, through G1/G0 phase arrest, followed by apoptosis which involves the up-regulation of Bax and the down-regulation of Bcl-2.