Ginsenoside Rh2 Induces Apoptosis via Activation of Caspase-1 and -3 and Up-Regulation of Bax in Human Neuroblastoma

  • Kim, Young-Soak (KT&G Central Research Institute) ;
  • Jin, Sung-Ha (Korea and Unviersity of Pennsylvania, School of Medicine, Department of Pharmacology)
  • Published : 2004.08.01

Abstract

In human neuroblastoma SK-N-BE(2) cells undergoing apoptotic death induced by ginsenos-ide Rh2, a dammarane glycoside that was isolated from Panax ginseng C. A. Meyer, caspase-1 and caspase-3 were activated. The expression of Bax was increased in the cells treated with ginsenoside Rh2, whereas Bcl-2 expression was not altered. Treatment with caspase-1 inhibi-tor, Ac-YVAD-CMK, or caspase-3 inhibitor, Z-DEVD-FMK, partially inhibited ginsenoside Rh2-induced cell death but almost suppressed the cleavage of the 116 kDa PARP into a 85 kDa fragment. When the levels of p53 were examined in this process, p53 accumulated rapidly in the cells treated early with ginsenoside Rh2. These results suggest that activation of caspase-1 and -3 and the up-regulation of Bax are required in order for apoptotic death of SK-N-BE(2) cells to be induced by ginsenoside Rh2, and p53 plays an important role in the pathways to promote apoptosis.

Keywords

References

  1. Adams, J. M. and Cory, S., The BcI-2 protein family: arbiters of cell survival. Science, 281, 1322-1326 (1998) https://doi.org/10.1126/science.281.5381.1322
  2. Desagher, S. and Martinou, J-C., Mitochondria as the central control point of apoptosis. Trend Cell Biol., 10, 369-377 (2000) https://doi.org/10.1016/S0962-8924(00)01803-1
  3. Enari, M., Talanian, R. V., Wong, W. W., and Nagata, S., Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature, 380, 723-726 (1996) https://doi.org/10.1038/380723a0
  4. Fei, X. F., Wang, B. X., Tashiro,S., Li, T. J., Ma, J. S., and Ikejima, T., Apoptotic effects of ginsenoside Rh2 on human malignant melanoma A375-S2 cells. Acta Pharmacol. Sci., 23, 315-322 (2002)
  5. Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., and Green, D. R., Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by BcI-$X_{L}$. J. Biol. Chem., 274, 2225-2233 (1999) https://doi.org/10.1074/jbc.274.4.2225
  6. Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J. C., Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci., 95, 4997-5002 (1998) https://doi.org/10.1073/pnas.95.9.4997
  7. Kharbanda, S., Pandey, P., Schofield, L., Israels, S., Roncinske, R., Yoshida, K., Bharti, A., Yuan, Z. M., Saxena, S., Weichselbaum, R., Nalin,C., and Kufe, D., Rolefor Bcl-$X_{L}$ as an inhibitor of cytosolic cytochrome c accumulation in DNA damage-induced apoptosis. Proc. Nat. Acad. Sci., 94, 6939-6942 (1997) https://doi.org/10.1073/pnas.94.13.6939
  8. Kim, Y. S., Jin, S. H., Lee, Y. H., Kim, S. I., and Park, J. D., Ginsenoside Rh2 induces apoptosis independently of BcI-2, Bcl-$X_{L}$, or Bax in C6Bu-1 cells. Arch. Pharm. Res., 22, 448-453 (1999). https://doi.org/10.1007/BF02979151
  9. Kim, Y. S., Jin, S. H., Lee, Y. H., Kim, S. I., and Park, J. D., Differential expression of protein kinase C subtypes during ginsenoside Rh2-induced apoptosis in SK-N-BE(2) and C6Bu-1 cells. Arch. Pharm. Res., 23, 518-524 (2000) https://doi.org/10.1007/BF02976583
  10. Kitanaka, C., Namiki, T., Noguchi, K., Mochizuki, T., Kagaya, S., Chi, S., Hayashi, A., Asai, A., Tsujimoto, Y., and Kuchino, Y., Caspase-dependent apoptosis of COS-7 cells induced by Bax overexpression: differential effects of Bcl-2 and Bcl-$X_{L}$ on Bax-induced caspase activation and apoptosis. Oncogene, 15,1763-1772 (1997) https://doi.org/10.1038/sj.onc.1201349
  11. Kluck, R. M., Bessy-Wetzel, E., Green, D. R., and Newmeyer, D. D., The release of cytochrome c from mitochondria a primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132-1136 (1997) https://doi.org/10.1126/science.275.5303.1132
  12. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91,479-489 (1997) https://doi.org/10.1016/S0092-8674(00)80434-1
  13. Miyashita, T. and Reed, J. C., Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80, 293-299 (1995) https://doi.org/10.1016/0092-8674(95)90412-3
  14. Park, J. A., Lee, K. Y., Oh, Y J., Kim, K. W., and Lee, S. K., Activation of caspase-3 protease via a Bcl-2-insensitive pathway during the process of ginsenoside Rh2-induced apoptosis. Cancer Lett., 121,73-81 (1997) https://doi.org/10.1016/S0304-3835(97)00333-9
  15. Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W., and Farber, J. L., The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem., 273, 7770-7775 (1998) https://doi.org/10.1074/jbc.273.13.7770
  16. Reed, J. C., Double identity for proteins of the BcI-2 family. Nature, 387, 773-776 (1997) https://doi.org/10.1038/42867
  17. Schuler, M., Bossy-Wetzel, Goldstein, J. C., Fitzgerald, P., and Green, D. R., p53 induces apoptosis by caspase activation through mitochondrial cytochrome C release. J. Biol. Chem., 275,7337-7342 (2000) https://doi.org/10.1074/jbc.275.10.7337
  18. Schuler, M. and Green, D. R., Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans., 29, 684-688 (2001) https://doi.org/10.1042/BST0290684
  19. Shimizu, S., Eguchi, Y., Kamiike, W., Matsuda, H., and Tsujimoto, Y., Bcl-2 expression prevents of the ICE protease cascade. Oncogene, 12, 2251-2257 (1996)
  20. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M.R., New colorimetric cytotoxicity assay for anticancer-durg mscreening. J. Natl. Cancer lnst., 82,1107-1112 (1990) https://doi.org/10.1093/jnci/82.13.1107
  21. Smyth, M. J., Perry, D. K., Zhang, J., Poirier, G. G., Hannun, Y. A., and Obeid, L. M., priCE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem. J., 316, 25-28 (1996)
  22. Tewari, M., Quan, L. T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M., Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell, 81, 801-809 (1995) https://doi.org/10.1016/0092-8674(95)90541-3
  23. Vogelstein, B., Lane, D., and Levine, A. J., Surfing the p53 network. Nature, 408, 307-310 (2000) https://doi.org/10.1038/35042675
  24. Xiang, J., Chao, D. T., and Korsmeyer, S. J., Bax-induced cell death may not require interleukin $1{\beta}$-converting enzyme-like proteases. Proc. Natl. Acad. Sci., 93, 14559-14563 (1996) https://doi.org/10.1073/pnas.93.25.14559
  25. Yang, J., Lui, X., Bhala, K., Kim, C.N., Ibrado, A. M., Cai, J., Peng, T. L., Jones, D. P., and Wang, X., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275,1129-1132 (1997) https://doi.org/10.1126/science.275.5303.1129
  26. Zou, H., Li, Y., Liu, X., and Wang, X., An APAF-1, cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem., 274,11549-11556 (1999) https://doi.org/10.1074/jbc.274.17.11549