References
- Adams, J. M. and Cory, S., The BcI-2 protein family: arbiters of cell survival. Science, 281, 1322-1326 (1998) https://doi.org/10.1126/science.281.5381.1322
- Desagher, S. and Martinou, J-C., Mitochondria as the central control point of apoptosis. Trend Cell Biol., 10, 369-377 (2000) https://doi.org/10.1016/S0962-8924(00)01803-1
- Enari, M., Talanian, R. V., Wong, W. W., and Nagata, S., Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature, 380, 723-726 (1996) https://doi.org/10.1038/380723a0
- Fei, X. F., Wang, B. X., Tashiro,S., Li, T. J., Ma, J. S., and Ikejima, T., Apoptotic effects of ginsenoside Rh2 on human malignant melanoma A375-S2 cells. Acta Pharmacol. Sci., 23, 315-322 (2002)
-
Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., and Green, D. R., Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by BcI-
$X_{L}$ . J. Biol. Chem., 274, 2225-2233 (1999) https://doi.org/10.1074/jbc.274.4.2225 - Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J. C., Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci., 95, 4997-5002 (1998) https://doi.org/10.1073/pnas.95.9.4997
-
Kharbanda, S., Pandey, P., Schofield, L., Israels, S., Roncinske, R., Yoshida, K., Bharti, A., Yuan, Z. M., Saxena, S., Weichselbaum, R., Nalin,C., and Kufe, D., Rolefor Bcl-
$X_{L}$ as an inhibitor of cytosolic cytochrome c accumulation in DNA damage-induced apoptosis. Proc. Nat. Acad. Sci., 94, 6939-6942 (1997) https://doi.org/10.1073/pnas.94.13.6939 -
Kim, Y. S., Jin, S. H., Lee, Y. H., Kim, S. I., and Park, J. D., Ginsenoside Rh2 induces apoptosis independently of BcI-2, Bcl-
$X_{L}$ , or Bax in C6Bu-1 cells. Arch. Pharm. Res., 22, 448-453 (1999). https://doi.org/10.1007/BF02979151 - Kim, Y. S., Jin, S. H., Lee, Y. H., Kim, S. I., and Park, J. D., Differential expression of protein kinase C subtypes during ginsenoside Rh2-induced apoptosis in SK-N-BE(2) and C6Bu-1 cells. Arch. Pharm. Res., 23, 518-524 (2000) https://doi.org/10.1007/BF02976583
-
Kitanaka, C., Namiki, T., Noguchi, K., Mochizuki, T., Kagaya, S., Chi, S., Hayashi, A., Asai, A., Tsujimoto, Y., and Kuchino, Y., Caspase-dependent apoptosis of COS-7 cells induced by Bax overexpression: differential effects of Bcl-2 and Bcl-
$X_{L}$ on Bax-induced caspase activation and apoptosis. Oncogene, 15,1763-1772 (1997) https://doi.org/10.1038/sj.onc.1201349 - Kluck, R. M., Bessy-Wetzel, E., Green, D. R., and Newmeyer, D. D., The release of cytochrome c from mitochondria a primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132-1136 (1997) https://doi.org/10.1126/science.275.5303.1132
- Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91,479-489 (1997) https://doi.org/10.1016/S0092-8674(00)80434-1
- Miyashita, T. and Reed, J. C., Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80, 293-299 (1995) https://doi.org/10.1016/0092-8674(95)90412-3
- Park, J. A., Lee, K. Y., Oh, Y J., Kim, K. W., and Lee, S. K., Activation of caspase-3 protease via a Bcl-2-insensitive pathway during the process of ginsenoside Rh2-induced apoptosis. Cancer Lett., 121,73-81 (1997) https://doi.org/10.1016/S0304-3835(97)00333-9
- Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W., and Farber, J. L., The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem., 273, 7770-7775 (1998) https://doi.org/10.1074/jbc.273.13.7770
- Reed, J. C., Double identity for proteins of the BcI-2 family. Nature, 387, 773-776 (1997) https://doi.org/10.1038/42867
- Schuler, M., Bossy-Wetzel, Goldstein, J. C., Fitzgerald, P., and Green, D. R., p53 induces apoptosis by caspase activation through mitochondrial cytochrome C release. J. Biol. Chem., 275,7337-7342 (2000) https://doi.org/10.1074/jbc.275.10.7337
- Schuler, M. and Green, D. R., Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans., 29, 684-688 (2001) https://doi.org/10.1042/BST0290684
- Shimizu, S., Eguchi, Y., Kamiike, W., Matsuda, H., and Tsujimoto, Y., Bcl-2 expression prevents of the ICE protease cascade. Oncogene, 12, 2251-2257 (1996)
- Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M.R., New colorimetric cytotoxicity assay for anticancer-durg mscreening. J. Natl. Cancer lnst., 82,1107-1112 (1990) https://doi.org/10.1093/jnci/82.13.1107
- Smyth, M. J., Perry, D. K., Zhang, J., Poirier, G. G., Hannun, Y. A., and Obeid, L. M., priCE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem. J., 316, 25-28 (1996)
- Tewari, M., Quan, L. T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M., Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell, 81, 801-809 (1995) https://doi.org/10.1016/0092-8674(95)90541-3
- Vogelstein, B., Lane, D., and Levine, A. J., Surfing the p53 network. Nature, 408, 307-310 (2000) https://doi.org/10.1038/35042675
-
Xiang, J., Chao, D. T., and Korsmeyer, S. J., Bax-induced cell death may not require interleukin
$1{\beta}$ -converting enzyme-like proteases. Proc. Natl. Acad. Sci., 93, 14559-14563 (1996) https://doi.org/10.1073/pnas.93.25.14559 - Yang, J., Lui, X., Bhala, K., Kim, C.N., Ibrado, A. M., Cai, J., Peng, T. L., Jones, D. P., and Wang, X., Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275,1129-1132 (1997) https://doi.org/10.1126/science.275.5303.1129
- Zou, H., Li, Y., Liu, X., and Wang, X., An APAF-1, cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem., 274,11549-11556 (1999) https://doi.org/10.1074/jbc.274.17.11549