• Title/Summary/Keyword: bayesian reliability

Search Result 243, Processing Time 0.038 seconds

Optimal Software Release Policy for Random Cost Model

  • Kim, Hee-Soo;Shin, Mi-Young;Park, Dong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.673-682
    • /
    • 2005
  • In this paper, we generalize the software reliability growth model by assuming that the testing cost and maintenance cost are random and adopt the Bayesian approach to determine the optimal software release time. Numerical examples are provided to illustrate the Bayesian method for certain parametric models.

Notes on the Comparative Study of the Reliability Estimation for Standby System with Rayleigh Lifetime Distribution

  • Kim, Hee-Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.239-250
    • /
    • 2004
  • We shall propose maximum likelihood, Bayesian and generalized maximum likelihood estimation for the reliability of the two-unit hot standby system with Rayleigh lifetime distribution that switch is perfect. Each estimation will be compared numerically in terms of various mission times, parameter values and asymptotic relative efficiency through Monte Carlo simulation.

  • PDF

Bayesian Analysis for Nonhomogeneous Poisson Process Software Reliability (비동질적 포아송과정을 사용한 소프트웨어 베이지안 신뢰성 분석에 관한 연구)

  • 김희철;이동철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.49
    • /
    • pp.23-31
    • /
    • 1999
  • Bayesian approach using nonhomogeneous Poisson process is considered for modelling software reliability problem. The usefulness of the iterative sampling-based method increases greatly as the dimension of a problem increases. Maximum likelihood estimator and Gibbs estimator are derived. Model selection based on a predictive likelihood is studied. A numerical example is given.

  • PDF

Development of the 'Three-stage' Bayesian procedure and a reliability data processing code (3단계 베이지안 처리절차 및 신뢰도 자료 처리 코드 개발)

  • 임태진
    • Korean Management Science Review
    • /
    • v.11 no.2
    • /
    • pp.1-27
    • /
    • 1994
  • A reliability data processing MPRDP (Multi-Purpose Reliability Data Processor) has been developed in FORTRAN language since Jan. 1992 at KAERI (Korean Atomic Energy Research Institute). The purpose of the research is to construct a reliability database(plant-specific as well as generic) by processing various kinds of reliability data in most objective and systematic fashion. To account for generic estimates in various compendia as well as generic plants' operating experience, we developed a 'three-stage' Bayesian procedure[1] by logically combining the 'two-stage' procedure[2] and the idea for processing generic estimates[3]. The first stage manipulates generic plant data to determine a set of estimates for generic parameters,e.g. the mean and the error factor, which accordingly defines a generic failure rate distribution. Then the second stage combines these estimates with the other ones proposed by various generic compendia (we call these generic book type data). This stage adopts another Bayesian procedure to determine the final generic failure rate distribution which is to be used as a priori distribution in the third stage. Then the third stage updates the generic distribution by plant-specific data resulting in a posterior failure rate distribution. Both running failure and demand failure data can be handled in this code. In accordance with the growing needs for a consistent and well-structured reliability database, we constructed a generic reliability database by the MPRDP code[4]. About 30 generic data sources were reviewed and available data were collected and screened from them. We processed reliability data for about 100 safety related components frequently modeled in PSA. The underlying distribution for the failure rate was assumed to be lognormal or gamma, according to the PSA convention. The dependencies among the generic sources were not considered at this time. This problem will be approached in further study.

  • PDF

Improvement of the Reliability Graph with General Gates to Analyze the Reliability of Dynamic Systems That Have Various Operation Modes

  • Shin, Seung Ki;No, Young Gyu;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.386-403
    • /
    • 2016
  • The safety of nuclear power plants is analyzed by a probabilistic risk assessment, and the fault tree analysis is the most widely used method for a risk assessment with the event tree analysis. One of the well-known disadvantages of the fault tree is that drawing a fault tree for a complex system is a very cumbersome task. Thus, several graphical modeling methods have been proposed for the convenient and intuitive modeling of complex systems. In this paper, the reliability graph with general gates (RGGG) method, one of the intuitive graphical modeling methods based on Bayesian networks, is improved for the reliability analyses of dynamic systems that have various operation modes with time. A reliability matrix is proposed and it is explained how to utilize the reliability matrix in the RGGG for various cases of operation mode changes. The proposed RGGG with a reliability matrix provides a convenient and intuitive modeling of various operation modes of complex systems, and can also be utilized with dynamic nodes that analyze the failure sequences of subcomponents. The combinatorial use of a reliability matrix with dynamic nodes is illustrated through an application to a shutdown cooling system in a nuclear power plant.

Parameter Estimation and Reliability Analysis Using Bayesian Approach for Bolted Joint and O-ring Seal of Solid Rocket Motor (고체 로켓 모터의 체결 볼트와 오링에 대한 베이지안 접근법 기반 모수 추정과 신뢰성 해석)

  • Gang, Jin Hyuk;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1055-1064
    • /
    • 2017
  • Since a device such as a rocket motor requires very high reliability, a reasonable reliability design process is essential. However, Korea has implemented a design method for applying a safety factor to each component. In classic reliability analysis, input variables such as mean and standard deviation, used in the limit state function, are treated as deterministic values. Because the mean and standard deviation are determined by a small amount of data, this approach could lead to inaccurate results. In this study, reliability analysis is performed for bolted joints and o-ring seals, and the Bayesian approach is used to statistically estimate the input variables. The estimated variables and failure probability, calculated by the reliability analysis, are derived in the form of probability distributions.

Reliability Updates of Driven Piles Based on Bayesian Theory Using Proof Pile Load Test Results (베이지안 이론을 이용한 타입강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.161-170
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was obrained based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability indices of driven steel pipe piles by adding more proof pile load test results, even not conducted to failure, to the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. The empirical method proposed by Meyerhof is used to calculate the predicted pile resistance. Reliability analyses were performed using the updated distribution of pile resistance ratio. The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian updates are most effective when limited data are available for reliability analysis.

Overview of the 217PlusTM, Electronic System Reliability Prediction Methodology (전기전자 시스템 신뢰성 예측 방법론 217PlusTM의 개요)

  • Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.215-226
    • /
    • 2008
  • MIL-HDBK-217 has widely been used for electronics reliability predictions. Recently, the $217Plus^{TM}$ has been developed by DoD RIAC and may replace MIL-HDBK-217. A overview of the $217Plus^{TM}$ has been performed in this paper. We first reviewed the overall concepts and reliability prediction procedures. We then explained the component models and the system level model with process grading concepts. Bayesian approach incorporating field data into the predicted failure rate is another feature of this methodology.

  • PDF

A Study on the Estimation of Launch Success Probability for Space Launch Vehicles Using Bayesian Method (베이지안 기법을 적용한 우주발사체의 발사 성공률 추정에 관한 연구)

  • Yoo, Seung-Woo;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.537-546
    • /
    • 2020
  • The reliability used as a performance indicator during the development of space launch vehicle should be validated by the launch success probability, and the launch data need to be fed back for reliability management. In this paper, the launch data of space launch vehicles around the world were investigated and statistically analyzed for the success probabilities according to the launch vehicle models and maturity. The Bayesian estimation of launch success probability was reviewed and analyzed by comparing the estimated success probabilities using several prior distributions and the statistical success probability. We presented the method of generating prior distribution function and considerations for Bayesian estimation.

A Review on the Analysis of Life Data Based on Bayesian Method: 2000~2016 (베이지안 기법에 기반한 수명자료 분석에 관한 문헌 연구: 2000~2016)

  • Won, Dong-Yeon;Lim, Jun Hyoung;Sim, Hyun Su;Sung, Si-il;Lim, Heonsang;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • Purpose: The purpose of this study is to arrange the life data analysis literatures based on the Bayesian method quantitatively and provide it as tables. Methods: The Bayesian method produces a more accurate estimates of other traditional methods in a small sample size, and it requires specific algorithm and prior information. Based on these three characteristics of the Bayesian method, the criteria for classifying the literature were taken into account. Results: In many studies, there are comparisons of estimation methods for the Bayesian method and maximum likelihood estimation (MLE), and sample size was greater than 10 and not more than 25. In probability distributions, a variety of distributions were found in addition to the distributions of Weibull commonly used in life data analysis, and MCMC and Lindley's Approximation were used evenly. Finally, Gamma, Uniform, Jeffrey and extension of Jeffrey distributions were evenly used as prior information. Conclusion: To verify the characteristics of the Bayesian method which are more superior to other methods in a smaller sample size, studies in less than 10 samples should be carried out. Also, comparative study is required by various distributions, thereby providing guidelines necessary.