Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.
Key drive of information quarrying is to digest liked information starting possible information. With the colossal amount of realities kept in documents, information bases, and stores, in the medical care area, it's inexorably significant, assuming excessive, arising compelling resources aimed at examination besides comprehension like information on behalf of the withdrawal of gen that might assistance in independent direction. Classification is method in information mining; it's characterized as per private, passing on item toward a specific course established happening it is likeness toward past instances of different substances trendy the data collection. In pre-owned recycled four Classification algorithm that incorporate Multi-Layer perception, KSTAR, Bayesian Network and PART to fabricate the grouping replicas arranged the malaria data collection and analyze the replicas, degree their exhibition through Waikato Environment for Knowledge Analysis introduced to Java Development Kit 8, then utilizations outfit's technique trendy promoting presentation of the arrangement methodology. The outcome perceived that Bayesian Network return most elevated exactness of 50.05% when working on followed by Multi-Layer perception, with 49.9% when helping is half, then, at that point, Kstar with precision of 49.44%, 49.5% when supporting individually and PART have lesser precision of 48.1% when helping, The exploration recommended that Bayesian Network is awesome toward remain utilized on Malaria data collection in our sanatoriums.
Kim, Nam Yee;Nam, Geum Mun;Kim, Yuna;Lee, Dong-Kye;Park, Seh Youn;Lee, Kyoungjae;Lee, Jaeyong
Analytical Science and Technology
/
v.27
no.1
/
pp.41-59
/
2014
The aims of this work were the identification and the classification of fresh lubricants and used engine oils of vehicles for the application in forensic science field-80 kinds of fresh lubricants were purchased and 86 kinds of used engine oils were sampled from 24 kinds of diesel and gasoline vehicles with different driving conditions. The sample of lubricants and used engine oils were analyzed by GC/MS. The Bayesian model technique was developed for classification or identification. Both the wavelet fitting and the principal component analysis (PCA) techniques as a data dimension reduction were applied. In fresh lubricants classification, the rates of matching by Bayesian model technique with wavelet fitting and PCA were 97.5% and 96.7%, respectively. The Bayesian model technique with wavelet fitting was better to classify lubricants than it with PCA based on dimension reduction. And we selected the Bayesian model technique with wavelet fitting for classification of lubricants. The other experiment was the analysis of used engine oils which were collected from vehicles with the several mileage up to 5,000 km after replacing engine oil. The eighty six kinds of used engine oil sample with the mileage were collected. In vehicle classification (total 24 classes), the rate of matching by Bayesian model with wavelet fitting was 86.4%. However, in the vehicle's fuel type classification (whether it is gasoline vehicle or diesel vehicle, only total 2 classes), the rate of matching was 99.6%. In the used engine oil brands classification (total 6 classes), the rate of matching was 97.3%.
The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.
The Joint Bayesian[1] method was published in 2012. Since then, it has been used for binary classification in almost all state-of-the-art face recognition methods. However, no improved methods have been published so far except 2D-JB[2]. In this paper we propose an improved version of the JB method that considers the features of both the given face image and its mirror image. In pattern classification, it is very likely to make a mistake when the value of the decision function is close to the decision boundary or the threshold. By making the value of the decision function far from the decision boundary, the proposed method reduces the errors. The experimental results show that the proposed method outperforms the JB and 2D-JB methods by more than 1% in the challenging LFW DB. Many state-of-the-art methods required tons of training data to improve 1% in the LFW DB, but the proposed method can make it in an easy way.
IEIE Transactions on Smart Processing and Computing
/
v.6
no.1
/
pp.18-20
/
2017
In this paper, we propose a new classification method to complement a $na{\ddot{i}}ve$ Bayesian classifier. This classifier assumes data distribution to be Gaussian, finds the discriminant function, and derives the decision curve. However, this method does not investigate finding the decision curve in much detail, and there are some minor problems that arise in finding an accurate discriminant function. Our findings also show that this method could produce errors when finding the decision curve. The aim of this study has therefore been to investigate existing problems and suggest a more reliable classification method. To do this, we utilize the gradient to find the decision curve. We then compare/analyze our algorithm with the $na{\ddot{i}}ve$ Bayesian method. Performance evaluation indicates that the average accuracy of our classification method is about 10% higher than $na{\ddot{i}}ve$ Bayes.
Most recommendation systems recommend the products or other information satisfying preferences of users on the basis of the users' previous profile information and other information related to product searches and purchase of users visiting web sites. This study aims to apply these application categories to e-mail more necessary to users. The E-Mail System has the strong personality so that there will be some problems even if e-mails are automatically classified by category through the learning on the basis of the personal rules. In consideration with this aspect, we need the semi-automatic system enabling both automatic classification and recommendation method to enhance the satisfaction of users. Accordingly, this paper uses two approaches as the solution against the misclassification that the users consider as the accuracy of classification itself using the dynamic threshold in Bayesian Learning Algorithm and the second one is the methodological approach using the recommendation agent enabling the users to make the final decision.
Although machine learning shows state-of-the-art performance in a variety of fields, it is short a theoretical understanding of how machine learning works. Recently, theoretical approaches are actively being studied, and there are results for one of them, margin and its distribution. In this paper, especially we focused on the role of margin in the perturbations of inputs and parameters. We show a generalization bound for two cases, a linear model for binary classification and neural networks for multi-classification, when the inputs have normal distributed random noises. The additional generalization term caused by random noises is related to margin and exponentially inversely proportional to the noise level for binary classification. And in neural networks, the additional generalization term depends on (input dimension) × (norms of input and weights). For these results, we used the PAC-Bayesian framework. This paper is considering random noises and margin together, and it will be helpful to a better understanding of model sensitivity and the construction of robust generalization.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.1
/
pp.40-48
/
2007
This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.
In this paper we are attempted to quantitative classification of the three object color regions on a RGB image using of an improved ML(Maximum Likelihood) classification method. A RGB color image consists of three bands i.e., red, green and blue. Therefore it has a 3 dimensional structure in view of the spectral and spatial elements. The 3D structural yokels were projected in RGB cube wherefrom the ML method applied. Between the conventionally and easily usable Box classification and the statistical ML classification based on Bayesian decision theory, we compared and reviewed. Using the ML method we obtained a good segmentation result to classify positive cell nucleus, negative cell Nucleus and background un a immuno-histological breast carcinoma image. Hopefully it is available to diagnosis and prognosis for cancer patients.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.