• Title/Summary/Keyword: bayesian classification

Search Result 254, Processing Time 0.03 seconds

An Approach to Detect Spam E-mail with Abnormal Character Composition (비정상 문자 조합으로 구성된 스팸 메일의 탐지 방법)

  • Lee, Ho-Sub;Cho, Jae-Ik;Jung, Man-Hyun;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.129-137
    • /
    • 2008
  • As the use of the internet increases, the distribution of spam mail has also vastly increased. The email's main use was for the exchange of information, however, currently it is being more frequently used for advertisement and malware distribution. This is a serious problem because it consumes a large amount of the limited internet resources. Furthermore, an extensive amount of computer, network and human resources are consumed to prevent it. As a result much research is being done to prevent and filter spam. Currently, research is being done on readable sentences which do not use proper grammar. This type of spam can not be classified by previous vocabulary analysis or document classification methods. This paper proposes a method to filter spam by using the subject of the mail and N-GRAM for indexing and Bayesian, SVM algorithms for classification.

Differentiation among stability regimes of alumina-water nanofluids using smart classifiers

  • Daryayehsalameh, Bahador;Ayari, Mohamed Arselene;Tounsi, Abdelouahed;Khandakar, Amith;Vaferi, Behzad
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2022
  • Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.

Pruning and Learning Fuzzy Rule-Based Classifier

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.663-667
    • /
    • 2004
  • This paper presents new pruning and learning methods for the fuzzy rule-based classifier. The structure of the proposed classifier is framed from the fuzzy sets in the premise part of the rule and the Bayesian classifier in the consequent part. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are finely adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. The cost function is determined as the squared-error between the classifier output for the correct class and the sum of the maximum output for the rest and a positive scalar. Then, the learning rules are derived from forming the gradient. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

  • PDF

Emotion Classification Using EEG Spectrum Analysis and Bayesian Approach (뇌파 스펙트럼 분석과 베이지안 접근법을 이용한 정서 분류)

  • Chung, Seong Youb;Yoon, Hyun Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper proposes an emotion classifier from EEG signals based on Bayes' theorem and a machine learning using a perceptron convergence algorithm. The emotions are represented on the valence and arousal dimensions. The fast Fourier transform spectrum analysis is used to extract features from the EEG signals. To verify the proposed method, we use an open database for emotion analysis using physiological signal (DEAP) and compare it with C-SVC which is one of the support vector machines. An emotion is defined as two-level class and three-level class in both valence and arousal dimensions. For the two-level class case, the accuracy of the valence and arousal estimation is 67% and 66%, respectively. For the three-level class case, the accuracy is 53% and 51%, respectively. Compared with the best case of the C-SVC, the proposed classifier gave 4% and 8% more accurate estimations of valence and arousal for the two-level class. In estimation of three-level class, the proposed method showed a similar performance to the best case of the C-SVC.

Towards Effective Analysis and Tracking of Mozilla and Eclipse Defects using Machine Learning Models based on Bugs Data

  • Hassan, Zohaib;Iqbal, Naeem;Zaman, Abnash
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.

Microblogging Sentiment Investor, Return and Volatility in the COVID-19 Era: Indonesian Stock Exchange

  • FARISKA, Putri;NUGRAHA, Nugraha;PUTERA, Ika;ROHANDI, Mochamad Malik Akbar;FARISKA, Putri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.61-67
    • /
    • 2021
  • The covid-19 pandemic scenario caused the most extensive economic shocks the world has experienced in decades. Maintaining financial performance and economic stability is essential during the pandemic period. In these conditions, where movement is severely restricted, media consumption is considered to be increasing. The social media platform is one of the media online used by the public as a source of information and also expressing their sentiment, including individual investors in the capital market as social media users. Twitter is one of the social media microblogging platforms used by individual investors to share their opinion and get information. This study aims to determine whether microblogging sentiment investors can predict the capital market during pandemics. To analyze microblogging sentiment investors, we classified sentiment using the phyton text mining algorithm and Naïve Bayesian text classification into level positive, negative, and neutral from November 2019 to November 2020. This study was on 68 listed companies on the Indonesia stock exchange. A Vector Autoregression and Impulse Response is applied to capture short and long-term impacts along with a causal relationship. We found that microblogging sentiment investor has a significant impact on stock returns and volatility and vice-versa. Also, the response due to shocks is convergent, and microblogging investors in Indonesia are categorized as a "news-watcher" investor.

Development of newly recruited privates on-the-job Training Achievements Group Classification Model (신병 주특기교육 성취집단 예측모형 개발)

  • Kwak, Ki-Hyo;Suh, Yong-Moo
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.2
    • /
    • pp.101-113
    • /
    • 2007
  • The period of military personnel service will be phased down by 2014 according to 'The law of National Defense Reformation' issued by the Ministry of National Defense. For this reason, the ROK army provides discrimination education to 'newly recruited privates' for more effective individual performance in the on-the-job training. For the training to be more effective, it would be essential to predict the degree of achievements by new privates in the training. Thus, we used data mining techniques to develop a classification model which classifies the new privates into one of two achievements groups, so that different skills of education are applied to each group. The target variable for this model is a binary variable, whose value can be either 'a group of general control' or 'a group of special control'. We developed four pure classification models using Neural Network, Decision Tree, Support Vector Machine and Naive Bayesian. We also built four hybrid models, each of which combines k-means clustering algorithm with one of these four mining technique. Experimental results demonstrated that the highest performance model was the hybrid model of k-means and Neural Network. We expect that various military education programs could be supported by these classification models for better educational performance.

Bayesian Survival Analysis of High-Dimensional Microarray Data for Mantle Cell Lymphoma Patients

  • Moslemi, Azam;Mahjub, Hossein;Saidijam, Massoud;Poorolajal, Jalal;Soltanian, Ali Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.95-100
    • /
    • 2016
  • Background: Survival time of lymphoma patients can be estimated with the help of microarray technology. In this study, with the use of iterative Bayesian Model Averaging (BMA) method, survival time of Mantle Cell Lymphoma patients (MCL) was estimated and in reference to the findings, patients were divided into two high-risk and low-risk groups. Materials and Methods: In this study, gene expression data of MCL patients were used in order to select a subset of genes for survival analysis with microarray data, using the iterative BMA method. To evaluate the performance of the method, patients were divided into high-risk and low-risk based on their scores. Performance prediction was investigated using the log-rank test. The bioconductor package "iterativeBMAsurv" was applied with R statistical software for classification and survival analysis. Results: In this study, 25 genes associated with survival for MCL patients were identified across 132 selected models. The maximum likelihood estimate coefficients of the selected genes and the posterior probabilities of the selected models were obtained from training data. Using this method, patients could be separated into high-risk and low-risk groups with high significance (p<0.001). Conclusions: The iterative BMA algorithm has high precision and ability for survival analysis. This method is capable of identifying a few predictive variables associated with survival, among many variables in a set of microarray data. Therefore, it can be used as a low-cost diagnostic tool in clinical research.

Social Commerce Food Coupon Recommending System Based On Context Information Using Bayesian Network (베이지안 네트워크를 이용한 상황정보에 기반을 둔 소셜커머스 음식 쿠폰 추천시스템)

  • Jeong, Hyeon-Ju;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.389-395
    • /
    • 2013
  • More sales of food and beverage coupons have been made using SNS on social commerce recently. If one buys coupons on social commerce, he/she can enjoy products at a lower price; however, there are drawbacks that one must consider such as location, service hours, and discount rate. Thus, this paper suggests a system that recommends food and beverage coupons on social commerce for users that considers a user's personal context of location, time, and purchase history. In order to reflect a user's context awareness and continuous preference, this paper suggests a method based on the Bayesian network. In order to reflect personalized weighting on the standard of coupon selection to match a user's preference, a measurement and classification of weighting preferences is performed on the basis of AHP. 20 experiments in one month involving 12 students were carried out to verify the effectiveness of the system, resulting in an 80% satisfaction level.

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.