• Title/Summary/Keyword: bayesian classification

Search Result 254, Processing Time 0.043 seconds

Classification of e-mail Using Dynamic Category Hierarchy and Automatic category generation (자동 카테고리 생성과 동적 분류 체계를 사용한 이메일 분류)

  • Ahn Chan Min;Park Sang Ho;Lee Ju-Hong;Choi Bum-Ghi;Park Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.79-89
    • /
    • 2004
  • Since the amount of E-mail messages has increased , we need a new technique for efficient e-mail classification. E-mail classifications are grouped into two classes: binary classification, multi-classification. The current binary classification methods are mostly spm mail classification methods which are based on rule driven, bayesian, SVM, etc. The current multi- classification methods are based on clustering which groups e-mails by similarity. In this paper, we propose a novel method for e-mail classification. It combines the automatic category generation method based on the vector model and the dynamic category hierarchy construction method. This method can multi-classify e-mail automatically and manage a large amount of e-mail efficiently. In addition, this method increases the search accuracy by dynamic reclassification of e-mails.

  • PDF

Automatic e-mail Hierarchy Classification using Dynamic Category Hierarchy and Principal Component Analysis (PCA와 동적 분류체계를 사용한 자동 이메일 계층 분류)

  • Park, Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.419-425
    • /
    • 2009
  • The amount of incoming e-mails is increasing rapidly due to the wide usage of Internet. Therefore, it is more required to classify incoming e-mails efficiently and accurately. Currently, the e-mail classification techniques are focused on two way classification to filter spam mails from normal ones based mainly on Bayesian and Rule. The clustering method has been used for the multi-way classification of e-mails. But it has a disadvantage of low accuracy of classification and no category labels. The classification methods have a disadvantage of training and setting of category labels by user. In this paper, we propose a novel multi-way e-mail hierarchy classification method that uses PCA for automatic category generation and dynamic category hierarchy for high accuracy of classification. It classifies a huge amount of incoming e-mails automatically, efficiently, and accurately.

  • PDF

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

Korean speech recognition using deep learning (딥러닝 모형을 사용한 한국어 음성인식)

  • Lee, Suji;Han, Seokjin;Park, Sewon;Lee, Kyeongwon;Lee, Jaeyong
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.213-227
    • /
    • 2019
  • In this paper, we propose an end-to-end deep learning model combining Bayesian neural network with Korean speech recognition. In the past, Korean speech recognition was a complicated task due to the excessive parameters of many intermediate steps and needs for Korean expertise knowledge. Fortunately, Korean speech recognition becomes manageable with the aid of recent breakthroughs in "End-to-end" model. The end-to-end model decodes mel-frequency cepstral coefficients directly as text without any intermediate processes. Especially, Connectionist Temporal Classification loss and Attention based model are a kind of the end-to-end. In addition, we combine Bayesian neural network to implement the end-to-end model and obtain Monte Carlo estimates. Finally, we carry out our experiments on the "WorimalSam" online dictionary dataset. We obtain 4.58% Word Error Rate showing improved results compared to Google and Naver API.

A Study on The Customer Classification of the EC based on Bayesian Learning Model (베이지안 학습법에 기초한 전자상거래에서의 고객 성향 분류 연구)

  • Jeon, Jin-Ho;Lee, Gye-Sung
    • Annual Conference of KIPS
    • /
    • 2002.11c
    • /
    • pp.2149-2152
    • /
    • 2002
  • 활성화되고 있는 전자상거래에 있어서 단순히 정해진 정보를 고객에게 제공하는 범위를 벗어나 고객의 특성에 따라 고객에 맞는 정보를 제공함으로서 매출 신장을 통하여 이윤확대를 꾀할 수 있다. 그러므로 본 연구에서는 베이지안 학습법을 이용하여 회원고객의 특성에 따른 분류화를 통하여 잠재적 구매 고객에 대한 구매 스타일을 예측하여 타겟광고가 가능한 기법에 대해 연구하였다.

  • PDF

Automated segmentation of concrete images into microstructures: A comparative study

  • Yazdi, Mehran;Sarafrazi, Katayoon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.315-325
    • /
    • 2014
  • Concrete is an important material in most of civil constructions. Many properties of concrete can be determined through analysis of concrete images. Image segmentation is the first step for the most of these analyses. An automated system for segmentation of concrete images into microstructures using texture analysis is proposed. The performance of five different classifiers has been evaluated and the results show that using an Artificial Neural Network classifier is the best choice for an automatic image segmentation of concrete.

Performance Comparison of Welding Flaws Classification using Ultrasonic Nondestructive Inspection Technique (초음파 비파괴 검사기법에 의한 용접결함 분류성능 비교)

  • 김재열;유신;김창현;송경석;양동조;김유홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.280-285
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself. Through this process, we comfirmed advantages/disadvantages of four algorithms and identified application methods of four algorithms.

  • PDF

Estimation for misclassified data with ultra-high levels

  • Kang, Moonsu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.217-223
    • /
    • 2016
  • Outcome misclassification is widespread in classification problems, but methods to account for it are rarely used. In this paper, the problem of inference with misclassified multinomial logit data with a large number of multinomial parameters is addressed. We have had a significant swell of interest in the development of novel methods to infer misclassified data. One simulation study is shown regarding how seriously misclassification issue occurs if the number of categories increase. Then, using the group lasso regression, we will show how the best model should be fitted for that kind of multinomial regression problems comprehensively.

A Sliding Window-based Multivariate Stream Data Classification (슬라이딩 윈도우 기반 다변량 스트림 데이타 분류 기법)

  • Seo, Sung-Bo;Kang, Jae-Woo;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.2
    • /
    • pp.163-174
    • /
    • 2006
  • In distributed wireless sensor network, it is difficult to transmit and analyze the entire stream data depending on limited networks, power and processor. Therefore it is suitable to use alternative stream data processing after classifying the continuous stream data. We propose a classification framework for continuous multivariate stream data. The proposed approach works in two steps. In the preprocessing step, it takes input as a sliding window of multivariate stream data and discretizes the data in the window into a string of symbols that characterize the signal changes. In the classification step, it uses a standard text classification algorithm to classify the discretized data in the window. We evaluated both supervised and unsupervised classification algorithms. For supervised, we tested Bayesian classifier and SVM, and for unsupervised, we tested Jaccard, TFIDF Jaro and Jaro Winkler. In our experiments, SVM and TFIDF outperformed other classification methods. In particular, we observed that classification accuracy is improved when the correlation of attributes is also considered along with the n-gram tokens of symbols.

Bayesian Network-Based Analysis on Clinical Data of Infertility Patients (베이지안 망에 기초한 불임환자 임상데이터의 분석)

  • Jung, Yong-Gyu;Kim, In-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.625-634
    • /
    • 2002
  • In this paper, we conducted various experiments with Bayesian networks in order to analyze clinical data of infertility patients. With these experiments, we tried to find out inter-dependencies among important factors playing the key role in clinical pregnancy, and to compare 3 different kinds of Bayesian network classifiers (including NBN, BAN, GBN) in terms of classification performance. As a result of experiments, we found the fact that the most important features playing the key role in clinical pregnancy (Clin) are indication (IND), stimulation, age of female partner (FA), number of ova (ICT), and use of Wallace (ETM), and then discovered inter-dependencies among these features. And we made sure that BAN and GBN, which are more general Bayesian network classifiers permitting inter-dependencies among features, show higher performance than NBN. By comparing Bayesian classifiers based on probabilistic representation and reasoning with other classifiers such as decision trees and k-nearest neighbor methods, we found that the former show higher performance than the latter due to inherent characteristics of clinical domain. finally, we suggested a feature reduction method in which all features except only some ones within Markov blanket of the class node are removed, and investigated by experiments whether such feature reduction can increase the performance of Bayesian classifiers.