• Title/Summary/Keyword: battery power

Search Result 2,716, Processing Time 0.035 seconds

Critical Path Analysis for Codesign of Public Key Crypto-Systems (공개키 연산기의 효율적인 통합 설계를 위한 임계 경로 분석)

  • Lee Wan bok;Roh Chang hyun;Ryu Dae hyun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.1
    • /
    • pp.79-87
    • /
    • 2005
  • In e-commerce applications, a public key cryptosystem is an important and indispensible element for the basic security operations such as authentication, digital signaturing, and key distribution. In wired network environments, the public key infrastructure certificate, which is based on X.509 specification, has been widely used. On the other hand, it still remains difficult to use the certificate information in wireless network environments due to the inherent limitations of the hand-held devices such as low computational power and short battery life. In this paper, we facilitate a codesign approach by implementing a software public-key cryptosystem and classifying its internal computation overheads quantitatively using a software profiling technique. Moreover, we propose a method to analyze the profiled data and apply it to the problem of software/hardware partitioning in a codesign approach. As an illustrative example, we analyze the computational overheads of an EC-Elfagamal application and examine a critical computational path.

  • PDF

Design and Implementation of the RF Systems for Bi-directional Wireless Capsule Endoscopes

  • Moon, Yeon-Kwan;Lee, Jyung-Hyun;Park, Hee-Joon;Lee, Ju-Gab;Ryu, Jae-Jong;Lee, Wu-Seong;Woo, Sang-Hyo;Won, Chul-Ho;Cho, Jin-Ho;Choi, Hyun-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1669-1680
    • /
    • 2006
  • This paper explains that the RF systems for hi-directional wireless capsule endoscopes were designed and implemented. The designed RF systems for a capsule endoscope can transmit the images of intestines from the inside to the outside of a body and the behavior of the capsules can be controlled by an external controller simultaneously. The hi-directional wireless capsule endoscope consists of a CMOS image sensor, FPGA, LED, battery, DC to DC Converter, transmitter, receiver, and antennas. The transmitter and receiver which were used in the hi-directional capsule endoscope, were designed and fabricated with $10mm(diameter){\times}3.2mm(thickness)$ dimensions taking into the MPE, power consumption, system size, signal to noise ratio and modulation method. The RF systems designed and implemented for the hi-directional wireless capsule endoscopes system were verified by in-vivo experiments. As a result, the RF systems for the hi-directional wireless capsule endoscopes satisfied the design specifications.

  • PDF

Channel Selection Using Optimal Channel-Selection Policy in RF Energy Harvesting Cognitive Radio Networks (무선 에너지 하비스팅 인지 무선 네트워크에서 최적의 채널 선택 정책을 이용한 채널 선택)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Gyeong Hyeon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, RF energy harvesting technology is a promising technology for small-size IoT(Internet of Things) devices such as sensor to resolve battery scarcity problem. When applied to existing cognitive radio networks, this technology can be expected to increase network throughput through the increase of cognitive user's operating time. This paper proposes a optimal channel-selection policy for RF energy harvesting CR networks model where cognitive users in harvesting zone harvest ambient RF energy from transmission by nearby active primary users and the others in non-harvesting zone choose the channel and communicate with their receiver. We consider that primary users and secondary users are distributed as Poisson point processes and contact with their intended receivers at fixed distances. Finally we can derive the optimal frame duration, transmission power and density of secondary user from the proposed model that can maximize the secondary users's throughput under the given several conditions and suggest future directions of research.

Tiered-MAC: An Energy-Efficient Hybrid MAC Protocol for Wireless Sensor Networks (Tiered-MAC: 무선 센서 네트워크를 위한 에너지 효율적인 하이브리드 MAC 프로토콜)

  • Lee, Han-Sun;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.42-49
    • /
    • 2010
  • Because sensor nodes operate with the limited power based on battery which cannot be easily replaced, energy efficiency is a fundamental issue pervading the design of communication protocols developed for wireless sensor networks. In wireless networks, energy efficient MAC protocols can usually be described as being either a contention-based protocol or a schedule-based protocol. It is suitable to use combination of both contention-based protocol and schedule-based protocol, because the strengths and weaknesses of these protocols are contrary to each other. In this paper, in order to minimize energy consumption of sensor nodes and maximize network lifetime, we propose a new MAC protocol called "Tiered-MAC" The Tiered-MAC uses a schedule-based TDMA inside maximum transmission range of sink node and a contention-based CSMA otherwise. Therefore, by efficiently managing the congested traffic area, the Tiered-MAC reduces the unnecessary energy consumption. Based on the ns-2 simulation result, we prove that the Tiered-MAC improves the energy-efficiency of sensor network nodes.

Resource Allocation for Maximizing Energy Efficiency in Energy Harvesting Networks with Channel Estimation Error (채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 에너지 효율성을 최대화 하는 자원할당 방안)

  • Lee, Kisong;Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.506-512
    • /
    • 2016
  • Recently, energy harvesting technology is considered as a tool to improve the lifetime of sensor networks by mitigating the battery capacity limitation problem. However, the previous work on energy harvesting has failed to provide practical information since it has assumed an ideal channel knowledge model with perfect channel state information at transmitter (CSIT). This paper proposes an energy efficient resource allocation scheme that takes account of the channel estimation process and the corresponding estimation error. Based on the optimization tools, we provide information on efficient scheduling and power allocation as the functions of channel estimation accuracy, harvested energy, and data rate. The simulation results confirm that the proposed scheme outperforms the conventional energy harvesting networks without considering channel estimation error in terms of energy efficiency. Furthermore, with taking account of channel estimation error, the results provides a new way for allocating resources and scheduling devices.

Design of smart mobility status notification system (스마트 모빌리티 상태 알림 시스템 설계)

  • Park, Se-il;Jang, Jong-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2128-2132
    • /
    • 2017
  • Smart mobility is rapidly emerging as a next-generation eco-friendly transportation system, and the market is booming every year. However, due to the characteristics of the devices that use electricity as the power source, the motor and the battery are different from the performance and actual performance indicated by the manufacturer depending on the user's weight and driving environment. Therefore, The frequency of the overload is increased and the failure and damage of the device are increasing. In this paper, we propose an application that provides personalized recommended driving guidance and overloaded driving situation notification at the actual driving separately from the recommended driving provided by the manufacturer after measuring the driving environment of the user, so as to prevent malfunction and damage of the smart mobility device, To ensure safety.

High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries

  • Heo, Kookjin;Im, Jehong;Lee, Jeong-Seon;Jo, Jeonggeon;Kim, Seokhun;Kim, Jaekook;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.282-290
    • /
    • 2020
  • In this article, we report the effect of blended cathode materials on the performance of all-solid-state lithium-ion batteries (ASLBs) with oxide-based organic/inorganic hybrid electrolytes. LiFePO4 material is good candidates as cathode material in PEO-based solid electrolytes because of their low operating potential of 3.4 V; however, LiFePO4 suffers from low electric conductivity and low Li ion diffusion rate across the LiFePO4/FePO4 interface. Particularly, monoclinic Li3V2(PO4)3 (LVP) is a well-known high-power-density cathode material due to its rapid ionic diffusion properties. Therefore, the structure, cycling stability, and rate performance of the blended LiFePO4/Li3V2(PO4)3 cathode material in ASLBs with oxidebased inorganic/organic-hybrid electrolytes are investigated by using powder X-ray diffraction analysis, field-emission scanning electron microscopy, Brunauer-Emmett-Teller sorption experiments, electrochemical impedance spectroscopy, and galvanostatic measurements.

Wireless Sensor Network Protocol based on LEACH Protocol using Fuzzy (Fuzzy를 적용한 LEACH Protocol 기반 무선 센서 네트워크 프로토콜)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.115-121
    • /
    • 2017
  • A wireless sensor network is a network in which nodes equipped with sensors capable of collecting data from the real world are configured wirelessly. Because the sensor nodes are configured wirelessly, they have limited power such as batteries. If the battery of the sensor node is exhausted, the node is no longer usable. If more than a certain number of nodes die, the network will not function. There are many wireless sensor network protocols to improve energy efficiency, among which LEACH Protocol is a typical example. The LEACH protocol is a cluster-based protocol that divides sensor space into clusters and transmits and receives data between nodes. Therefore, depending on how the cluster is structured, the shape of the energy cow may decrease or increase. We compare the network lifetimes of the existing LEACH protocols and the three types of protocols that have been improved using fuzzy methods for cluster selection.

Security Scheme for Prevent malicious Nodes in WiMAX Environment (노드간 에너지 소비를 효율적으로 분산시킨 PRML 메커니즘)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Nam-Kyu;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.774-784
    • /
    • 2009
  • A wireless sensor network consisting of a large number of nodes with limited battery power should minimize energy consumption at each node to prolong the network lifetime. To improve the sensitivity of wireless sensor networks, an efficient scheduling algorithm and energy management technology for minimizing the energy consumption at each node is desired. ill this paper, we propose energy-aware routing mechanism for maximum lifetime and to optimize the solution quality for sensor network maintenance and to relay node from its adjacent cluster heads according to the node"s residual energy and its distance to the base station. Proposed protocol may minimize the energy consumption at each node, thus prolong the lifetime of the system regardless of where the sink is located outside or inside the cluster. Simulation results of proposed scheme show that our mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime. To verify propriety using NS-2, proposed scheme constructs sensor networks adapt to current model and evaluate consumption of total energy, energy consumption of cluster head, average energy dissipation over varying network areas with HEED and LEACH-C.

An Adaptive Decision Feedback Equalizer for Underwater Acoustic Communications (수중음향통신을 위한 적응 결정궤환 등화기)

  • Choi, Young-Chol;Park, Jong-Won;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.645-651
    • /
    • 2009
  • In this paper, we present bit error rate(BER) performance of an adaptive decision feedback equalizer(DFE) using experimental data. The experiment was performed at the shore of Geoje in November 2007. The BER of the adaptive DFE whose tap weight is updated by RLS is described with change of feedforward filter length, feedback filter length, training sequence length, and delay, which shows that the uncoded average BER is $4{\times}10^2\;and\;1.5{\times}10^{-2}$ with transmission range of 9.7km and 4km, respectively. The BER of the adaptive DFE can be lower than 10-3 by a forward error correction code and therefore the adaptive DFE may be a good candidate for a high speed AUV communications since the volume and weight of the underwater acoustic modem should be small because of the restricted space and power in the battery-operated AUV.