• Title/Summary/Keyword: battery power

Search Result 2,710, Processing Time 0.027 seconds

LLC Resonant and Synchronous Buck Converter Based High Efficiency Battery Charger for Energy Storage Systems (에너지 저장 시스템을 위한 LLC/동기 벅컨버터 기반 고효율 배터리 충방전기 설계)

  • Lee, Taeyeong;Lee, Il-Oun;Cho, Younghoon;Kim, Hangoo;Cho, Junseok;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.15-16
    • /
    • 2016
  • This paper proposes an isolated DCDC converter that consists of unregulated LLC resonant converter and non-isolated synchronous buck converter for battery charger of energy storage systems application. The unregulated converter operates as transformer with fixed duty ratio and switching frequency. The synchronous buck converter is installed in the output of the LLC resonant converter. And the converter charges and discharges the battery by controlling a current of battery. The proposed converter can get the high efficiency by separating function. This paper explains design of an unregulated converter and synchronous converter.

  • PDF

Development of Small-capacity PCS for Personal Mobility Utilization (Personal Mobility 활용을 위한 소용량 PCS 개발)

  • Sun-Pil Kim;Kuk-Hyun Kim;Chang-Ho Lee;Le Tuan Vu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • This study conducted a study on a small-capacity PCS using lithium-ion batteries used in personal mobility. Most of the batteries in Personal Mobility only charge with external chargers and are used only as mobile energy sources. However, this paper aims to charge the battery of PM using PV and system power or to use the charged power as a stand-alone power supply. The developed PCS can be operated as a two-channel battery charger/discharger, a battery charger using solar power, and a stand-alone solar inverter depending on the operation method. The validity of the manufactured small-capacity PCS was verified through experiments.

Analysis of Micro-grid Operations Including PV Source and Li Battery (태양광 전원과 Li 배터리를 포함하는 마이크로 그리드의 운영특성 해석)

  • Kim, Deok Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4692-4697
    • /
    • 2014
  • A micro-grid including photovoltaic source and Li battery has been installed and operated for several years at the campus of USF and been used as a test bed. Photovoltaic power source has been strongly influenced by the location, weather and climate of the installed area. To compensate for the uncertainty of photovoltaic source's power output, a Li battery is connected directly to the photovoltaic source and supplies electric power to the grid. The Li battery is operated to supply power output to the grid according to the charging or discharging mode of the battery based on the average power output of the photovoltaic source, which is calculated from the monitored data for several years. The grid of the photovoltaic and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery cells are analyzed in detail.

Battery-loaded power management algorithm of electric propulsion ship based on power load and state learning model (전력 부하와 학습모델 기반의 전기추진선박의 배터리 연동 전력관리 알고리즘)

  • Oh, Ji-hyun;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1202-1208
    • /
    • 2020
  • In line with the current era of the 4th Industrial Revolution, it is necessary to prepare for the future by integrating AI elements in the ship sector. In addition, it is necessary to respond to this in the field of power management for the appearance of autonomous ships. In this study, we propose a battery-linked electric propulsion system (BLEPS) algorithm using machine learning's DNN. For the experiment, we learned the pattern of ship power consumption for each operation mode based on the ship data through LabView and derived the battery status through Python to check the flexibility of the generator and battery interlocking. As a result of the experiment, the low load operation of the generator was reduced through charging and discharging of the battery, and economic efficiency and reliability were confirmed by reducing the fuel consumption of 1% of LNG.

Design and Analysis of a Power Control and Monitoring System for Buoy

  • Oh, Jin-Seok;Jo, Kwan-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1068-1074
    • /
    • 2009
  • This paper describes a study for the buoy which should be operated by a stand-alone power system. The field of this study is related to a power system operated by two batteries which depends on the load power. The fluctuation of the voltages makes the life cycle of the battery shorten. The control algorithm has been proposed for reducing the voltage pulsation of the battery by operation strategy according to using purpose such as main or sub power supply system. The power system with battery is separated two parts and this has been proved through a simulation and a sea experiment. In order for the experiment to use a wireless monitoring system has been installed in buoy. This paper shows an excellent test result of wireless monitoring system for buoy.

The Development and Experimental Evaluation of 100kVA Unified Power Quality Conditioner interconnected to the Li-Battery System (리튬 배터리를 연계한 100kVA UPQC 개발 및 성능시험)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Park, Jung-Sung;Sohn, Jin-Man;Choi, Eun-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.102-110
    • /
    • 2012
  • This paper propose the advanced topology of UPQC, its DC link is connected with Lithium battery, to compensate the momentary interruptions. The proposed system can be operated as UPS mode using the parallel inverter, which control the charge or discharge of battery, in case of the interruption. We dvelop 100kVA UPQC using the proposed topology to rise the power quality and the reliability of Microgrid. We verify its usefulness through voltage compensation test, UPS operation test and etc. using Microgrid test facility.

High Power Factor Converter for Electric Vehicle Chargers (전기자동차 충전기용 고역율 콘버어터 회로)

  • 김영민;이수원;모창호;유철로
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • Generally, various semiconductor switching devices for power systems are used in battery chargers for electric vehicle. When these used, it takes the problems of transient-current or distortion of waveforms in power systems near by battery chargers because of harmonics and large peak-current, low power factor, etc., caused by the non-linearity of these devices. Recently, power factor control, line current peak-cut, harmonics reduction which was ignored in past is more and more important. In this paper, to solve those problems we will improve the characteristics of voltage rising and propose the high power factor converter circuit for battery chargers. Our proposed system convert commutated voltage to AC resonant wave in high frequency inverter and rectify the link voltages passed high-frequency transformer and transfer the DC voltages. Especially, the effect using these converter system can be improved very large by power factor control and we have to verify the possibilities of improvement through the experiment of Pb-Acid battery application.

  • PDF

Robust and Unity Input Power Factor Control Scheme for Electric Vehicle Battery Charger (전기차 배터리 충전기용 강인한 단위 입력 역률 제어장치)

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • This study develops a digital control scheme with power factor correction for a front-end converter in an electric vehicle battery charger. The front-end converter acts as the boost-type switching-mode rectifier. The converter assumes the two roles of the battery charger, which include power factor control and robust charging performance. The proposed control scheme consists of a charging control algorithm and a grid current control algorithm. The scheme aims to obtain unity input power factor and robust performance. Based on the linear average model of the converter, a constant-current constant-voltage charging control algorithm that passes through only one proportional-integral controller and a current feed-forward path is proposed. In the current control algorithm, we utilized a second band pass filter, a single-phase phase-locked loop technique, and a duty-ratio feed-forward term to control the grid current to be in phase with the grid voltage and achieve pure sinusoidal waveform. Simulations and experiments were conducted to verify the effectiveness of the proposed control scheme, both simulations and experiments.

Energy Regenerative 3-Phase Bidirectional AC-DC Converter for the Secondary Battery Charge/Discharge System (에너지 회수가 가능한 2차전지 충방전시스템용 3상 양방향 AC-DC 컨버터)

  • Lim, Seung-Beom;Won, Hwa-Young;Chae, Soo-Yong;Seo, Young-Min;Lee, Jun-Young;Ko, Jong-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.259-261
    • /
    • 2008
  • The electronic products such as laptop PC, cellular phone, robots and etc. need the DC power source. Recently, the secondary battery is frequently used as the portable DC power source and it needs forming process. In this paper, we proposed the bidirectional converter that the battery can be charged with high power factor and the discharged energy is regenerated into AC power source. In the charging mode, the converter acts as the boost rectifier. And the AC input current is controlled in phase with the AC input voltage. As a result, the power factor is improved nearly to unity. In the discharging mode, the DC power of battery wasted in resistor is regenerated to the AC bus line. Finally, the validity of the proposed bidirectional converter is verified by computer simulations and experimentation.

  • PDF

Operation Algorithm for a Parallel Hybrid Electric Vehicle with a Relatively Small Electric Motor

  • Kyoungcheol Oh;Kim, Donghyeon;Kim, Talchol;Kim, Chulsoo;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the power assist and the equivalent fuel algorithms are proposed. In the power assist algorithm, an electric motor is used to assist the engine which provides the primary power source. Tn the equivalent fuel algorithm, the electric energy stored in the battery is considered to be an equivalent fuel, and an equivalent brake specific fuel consumption for the electric energy is proposed. From the equivalent fuel algorithm, distribution of the engine power and the motor power is determined to minimize the fuel consumption for a given battery state of charge (SOC) and a required vehicle power. It is found from the simulation results that the fuel economy and the final battery SOC depend on the motor discharge energy and it is the best way to charge the battery only by the regenerative braking, not by the engine to improve the overall fuel efficiency of the HEV with the relatively small motor.