• Title/Summary/Keyword: battery monitoring

Search Result 224, Processing Time 0.028 seconds

Development of Battery Monitoring System Using the Extended Kalman Filter (확장 칼만 필터를 이용한 배터리 모니터링 시스템 개발)

  • Jo, Sung-Woo;Jung, Sun-Kyu;Kim, Hyun-Tak
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.7-14
    • /
    • 2020
  • A Battery Monitoring System capable of State-of-Charge(SOC) estimation using the Extended Kalman Filter(EKF) is described in this paper. In order to accurately estimate the SOC of the battery, the battery cells were modeled as the Thevenin equivalent circuit model. The Thevenin model's parameters were measured in experiments. For the Battery Monitoring System, we designed a battery monitoring device that can calculate the SOC estimation using the EKF and a monitoring server that controls multiple battery monitoring devices. We also develop a web-based dashboard for controlling and monitoring batteries. Especially the computation of the monitoring server could be reduced by calculating the battery SOC estimation at each Battery Monitoring Device.

MINIMUM BATTERY ENERGY IN THE SURVIVAL MODE FOR THE COMS SPACECRAFT

  • Koo, Ja-Chun;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.96-99
    • /
    • 2008
  • The MRE (Monitoring Reconfiguration Electronics) board included inside the SCU (Spacecraft Computer Unit) in the COMS (Communication, Ocean and Meteorological Satellite) spacecraft is used to monitor the battery voltage and to detect a battery under voltage (low battery capacity) or a battery overvoltage (overcharge). In case of alarm detection, a reconfiguration is initiated by the MRE board. The MRE configures the overall spacecraft in the survival mode to protect the Li-Ion (lithium ion) battery from overcharge and over discharge. For the EPS (Electrical Power Subsystem) point of view, the survival mode can be trigged from hardware wired thresholds. The aim of this paper to provide and to justify the low and high threshold levels which are associated to the MRE battery voltage monitoring. The MRE trig guarantees minimum battery energy to available for the required 48 hours autonomy duration of the spacecraft after MRE trig in the survival mode.

  • PDF

Design and Development of Agriculture Drone battery usage Monitoring System using Wireless sensor network

  • Lee, Sang-Hyun;Yang, Seung-Hak;You, Yong-Min
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.38-44
    • /
    • 2017
  • Currently, wired gables have been installed or portable storage devices have been installed for data acquisition of flying drone. In this paper, we propose a technology to transmit data wirelessly by sensing information such as battery discharge value, acceleration, and temperature by attaching RF sensor to a drone. The purpose of this paper is to design and develop the monitoring technology of agriculture drone battery usage in real time using RF sensor. In this paper, we propose a monitoring system that can check real time data of battery changed value, temperature, and acceleration during pesticide control activity of agricultural drone.

Fabrication of Battery Checking & Monitoring System (밧데리 진단 및 감시장치 제작)

  • Lee, Sang-Cheol;Na, Chae-Dong;Yoo, Jae-Moon;Choi, Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2156-2159
    • /
    • 1998
  • This paper describes a Battery Checking & Monitoring System for monitoring battery cell and power system in Uninterruptible Power Supplies(UPS). The system is capable of measuring, in a matter of setting time, float and discharge voltage of up to 240 cells in a single installation, and has the memory capacity to store battery's alarm data information on up to 200 separate sites. This system are easy to maintain and attain cost effectively, so that prepared for meeting the customer's service needs immediately. The system is additionally programmed with a each model, that will enable to accurately determine the remain battery capacity in a UPS system following a short discharge test. It is also equipped with remote interrogation and control facilities.

  • PDF

Development of a Battery Monitoring Technology using Its Impedance (임피던스를 이용한 배터리 모니터링 기술)

  • Shim, Jae-Hong;Kim, Jae-Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.25-29
    • /
    • 2011
  • Emerging demands for rechargeable battery for various applications needs more effective battery management system such as the prediction of the usable time about a battery. Many prediction methods have been suggested but none of them come into bounds of reliability. In this paper, we proposed a new prediction algorithm for the remaining capacity of a rechargeable battery by using the transformed curve based on its impedance. Hardware for monitoring a battery was designed and made. Through a series of experiment, we showed the effectiveness of the proposed prediction algorithm of a battery's remaining capacity.

DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition (DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석)

  • SoonJong, Kwon;Soo-Yeon, Kim;Jin, Hwang;Sang-Kyun, Woo;Bong-Suck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

Design and Implementation of Charger Monitoring System Based on CAN Protocol (CAN 통신 기반 충전 모니터링 시스템 설계 및 구현)

  • Choo, Yeon-Gyu;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.541-548
    • /
    • 2012
  • On this paper, we proposed a design rule of charger monitoring system which allow us to watch the charging status and verify it for building the electric chargers infrastructure by spread of electric vehicle. Gathering the charging status of battery by proposed system makes us to enhance the charging algorithm, to interface with BMS(Battery Management System) of electric vehicle, to control the charging process with users. Because the technology of rapid charging is dependant upon various factors such as a performance and stability of battery. We proposed the monitoring system of rapid charger based on CAN protocol that can watch a working status of rapid charger including the charging status of battery with real time and can reduce the charging time of battery with optimized status. We also implement it and evaluate its performance.

The development of controller for lithium-ion battery of electric vehicle (전기자동차용 리튬이온 배터리 제어를 위한 제어기 개발)

  • Cho, Sebong;Hong, Hyunju;Jeon, Ywunseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.96.2-96.2
    • /
    • 2010
  • EV(Electric Vehicle) 차량에서 BMS(Battery Management System) 은 모터에 공급되는 고전압 배터리의 충전상태를 감지하여 VCU(Vehicle Control Unit)에 전송하게 된다. VCU에서는 배터리의 충전상태를 확인하여 모터 구동 전략을 수립하여 각 제어기에 전송하게 된다. 위와 같이 EV에서 배터리 충전상태를 정확하게 감지하지 못한다면, 모터 구동을 위한 전략 수립에 많은 제약이 따르게 된다. 정확한 배터리 충전 상태를 감지하기 위해서는 배터리 각 셀의 전압/전류/온도 등을 측정하여 연산에 의해 결정된다. 그 중 셀 전압 측정 방식은 Photomos relay를 이용한 방식으로 하드웨어적인 오차에 ${\pm}$수십mV보다 더둑 더 정밀하게 측정할 수 있는 방법이 없었다. 하지만, 셀 전압 측정 정밀도를 향상시키기 위해 신규로 개발된 battery monitoring IC를 이용한 BMS의 H/W 개발에 대해 설명할 것이다. 또한, Monitoring IC를 이용한 BMS의 셀 전압 측정 정밀도를 얼마나 개선시킬 수 있는지에 대해 연구하였다.

  • PDF

Development of Wireless Monitoring System for Layers Rearing in Multi-tier Layers Battery by Machine Vision (기계시각을 이용한 고단 직립식 산란계 케이지의 무선 감시시스템 개발)

  • Lim, Song-Su;Chang, Dong-Il;Lee, Seung-Joo;So, Jae-Kwang
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • This research was conducted to develop and analyze a wireless monitoring system for judging if sick or dead layers (SDL) exist in multi-tier layers battery (MLB) by machine vision, and to evaluate the performance between a wired monitoring system and it. This study used the AP (Access Point), the RS-285 to RS-232 converter, RS-232 to Ethernet converter, PICBASIC board and upgraded lump image processing method to change wired monitoring system into wireless monitoring system. The system was tested at a pilot farm and farm layer house. Results showed that monitoring judgement success rate at a pilot farm on normal cage (without SDL) was 82.3% and that on abnormal cage (with SDL) was 87.5%, respectively. And communication performance test results showed at farm layer house was $700{\sim}900$ kbps while equipments operated. There were dropped slightly than performance of wired monitoring system, however, the quantity was too small to make a significant difference of performance of the controling system developed for wireless communication.