• Title/Summary/Keyword: battery charging

Search Result 659, Processing Time 0.039 seconds

The Core Technical Trends of TESLA EV(Electric Vehicle) Motors (테슬라(TESLA) 전기자동차 핵심 기술동향)

  • Bae, Jin-Yong;Kim, Yong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.414-422
    • /
    • 2017
  • This paper reviews the core technical trends of TESLA EV Motors. The TESLA EV Motors is explosively popular with a considerable recharging infrastructure, a wide 17-[inch] touch display, 417 [HP], and 378 [km] going distance. The object of this study analyzes the body appearance, motor and, battery cooling system, battery arrangement, battery management system, super charging station, power electronics, and induction motor.

Development of Independent 1 kW-class PEMFC-Battery Hybrid System for a Building (건물용 독립형 1kW급 PEMFC-배터리 하이브리드 시스템 기술 개발)

  • Yang, Seug Ran;Kim, Jung Suk;Choi, Mi Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • We have developed 1 kW-class PEMFC-battery hybrid system independently powering to the building, through the process of system design, current load characteristics analysis, power system configuration for demonstration site and performance evaluation. In order to use the fuel cell and battery as the hybrid type, a control technology for the charging/discharging decision and charging speed of the battery is required rather than using fuel cell. Also output power distribution between PEMFC and the battery is a core of energy management technology. It is confirmed that it is possible to supply independently 1kW powering the building to ensure optimal energy management through the power control experiment of the hybrid system.

Design of the Protocol for Wireless Charging of Mobile Emotional Sensing Device (모바일 감성 센싱 단말기의 무선 충전을 위한 프로토콜 설계 및 구현)

  • Kim, Sun-Hee;Lim, Yong-Seok;Lim, Seung-Ok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.95-101
    • /
    • 2012
  • In order to supply emotion service depending on user's emotional change in a mobile environment, various researches have been carried. This paper discusses a protocol for wireless charging and an embedded platform of the mobile emotional sensing device which supports that. Wireless charging process relieves user's vexatious task to charge the emotional sensing device. To support wireless charging, there are one basestation and several mobile devices. Basestation coordinates and controls the devices over wireless communication, as well as supplies energy. For 1:N communication we defines the network whose superframe is classified into four categories: a network join superframe, a charging request superframe, a charging superframe and an inactive superframe. Physical layer provides how to supply energy to the devices and communicate physically. Mobile device is equipped with energy charged circuits, which correspond with the defined energy supplying method, as well as bidirectional communication circuits. Mobile device monitors and analyzes its own battery status, and is able to send a request packet to basestation. Therefore, it can be charged before its battery is exhausted without user's perception.

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.

Cell Balance of Secondary Battery by Using The Majority FET (다수의 FET를 이용한 2차 전지의 셀 밸런스에 관한 연구)

  • Lim, Geun-Wook;Cho, Hyun-Chan;Kim, Jong-Won;Kim, Kwang-Sun;Lee, Jung-Su;Yoo, Sang-Gil;Kang, Hee-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.19-22
    • /
    • 2008
  • In this paper, the cell balance of secondary battery using a large number of MOSFETs is discussed. We can balance the cells by controlling battery charging current with help of MOSFETs. If the cells are not balanced, we can not use the whole energy of the battery while charging and discharging, therefore, the energy efficiency is decreased. To increase the energy efficiency, we propose the MOSFET control algorithm which will perform cell balancing by controlling the charging current.

  • PDF

A study of small size battery charging characteristic by serial-parallel connected DSC module (단위 DSC셀의 직병렬 연결을 통한 소형 배터리 충전특성에 관한 연구)

  • Hong, Ji-Tae;Choi, Jin-Young;Seo, Hyun-Woong;Kim, Mi-Jeong;Sim, Ji-Young;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.192-194
    • /
    • 2006
  • To elucidate possible challenges for outdoor practical use of dye-sensitized solar cells(DSC), compared with conventional Si solar cells. DSC modules still need the larger area than conventional Si solar modules to attain the same rated output because of lower photoelectron-chemical conversion efficiency. However, using batteries backup systems, the measured data shows that DSCs gathered over 12% more electricity than Si solar cells of the same rated output power in same outdoor condition. Moreover, battery charging time of DSC is about 1 hour faster than same rate of Si solar module. In this paper, 12 single DSC cells prepared for 4 serialized DSC cells was connected in 3 row parallel which have same output power rate of Si solar module. This DSC module was practiced generating characteristic experiment over outdoor daylight condition and applied with PV battery charger by using DC-DC converter. The main advantages of DSC module battery charger as compared with conventional Si solar module one are shorter charge time and lower cost.

  • PDF

Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method (배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정)

  • Kim, Hye Rim;Kim, Tong Seop
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.34-36
    • /
    • 2021
  • The interest in renewable energy-based distributed power generation systems is increasing due to the recognitions of the breakthrough of existing centralized power generation, energy conversion, and environmental problems. In this study, the optimal capacity was selected by simulating a distributed power generation system based on PV and WT using lead acid batteries as the energy storage system. CHP was adopted as the existing power source, and the optimal capacity of the system was derived through MOGA according to the operating modes(full load/part load) of the existing power source. In addition, it was confirmed that the battery life differs when the battery charging method is changed at the same battery capacity. Therefore, for economical and stable power supply and demand, the capacity selection of the distributed generation system considering the battery charging method should be performed.

A Study on Solar Charging System for Stable Battery Use of Electric Kickboard (전동킥보드의 안정적 배터리 사용을 위한 태양광 충전 시스템에 관한 연구)

  • Jang, Eun-Jin;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.175-179
    • /
    • 2021
  • With the recent increase in the proportion of single-person households, the demand for reasonable personal mobility has increased, and the "Personal Mobility" industry that can be used conveniently and concisely has grown rapidly. In fact, according to data from the Korea Transport Institute, the scale of the electric kickboards rental industry, one of the personal mobility industry sectors, is expected to expand to 200,000 units in 2022. Due to the characteristics of electric kickboards that are powered by electricity, stable and efficient battery supply is the most basic and important issue. According to recent reviews from users who have used the electric kickboard, there were cases where the use of the electric kickboard is attempted, but the battery is in a discharged state or the battery charge level is low and thus cannot be used. Therefore, this paper proposes a solar charging system for stable battery use of electric kickboards. When this system is applied, it is expected that it will not only be an eco-friendly charging method for electric kickboards, but also stably supply and demand batteries while driving.

Effect of Fast Charging Mode on the Degradation of Lithium-Ion Battery: Constant Current vs. Constant Power (정전류/정출력 고속충전 방식에 따른 리튬이온전지의 열화 비교 연구)

  • Park, Sun Ho;Oh, Euntaek;Park, Siyoung;Lim, Jihun;Choi, Jin Hyeok;Lee, Yong Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.173-179
    • /
    • 2020
  • Electric vehicles (EVs) using lithium secondary batteries (LIBs) with excellent power and long-term cycle performance are gaining interest as the successors of internal combustion engine (ICE) vehicles. However, there are few systematic researches for fast charging to satisfy customers' needs. In this study, we compare the degradation of LIB where its composition is LiNi0.5Co0.2Mn0.3/Graphite with the constant current and constant power-charging method. The charging speed was set to 1C, 2C, 3C and 4C in the constant current mode and the value of constant power was calculated based on the energy at each charging speed. Therefore, by analyzing the battery degradation based on the same charging energy but different charging method; CP charging method can slow down the battery degradation at a high rate of 3C through the voltage curve, capacity retention and DC-IR. However, when the charging rate was increased by 4C or more, the deviation between the LIBs dominated the degradation than the charging method.

Role and Operation Algorithm of a Battery Management Systems (EV용 BMS의 역할과 운전 알고리즘)

  • 이재문;최욱돈;이종필;이종찬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.467-473
    • /
    • 2001
  • BMS(Battery Management System) in EV system(Electric Vehicle) senses voltage, temperature and the charging or discharging current of batteries. The main roles of BMS are to estimate SOC(State OF Charge) of batteries and optimally monitor them according to the operation state of EV system which is motoring mode or charging mode. In this paper, we propose the proper algorithm about BMS's roles and operation which is suitable to EV system and illustrate validity and effectiveness through the experiments which were performed in the condition of Vehicle road test and charging test.

  • PDF