• Title/Summary/Keyword: batch tests

Search Result 261, Processing Time 0.021 seconds

Remediation of Copper-Contaminated Soil using Low Molecular Weight Organic Acid Flushing Technique (저분자량 유기산 세척을 이용한 오염토양으로부터의 Cu제거에 관한 연구)

  • 이기철;강순기;공성호
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1998
  • For successful soil flushing process selection of appropriate flushing reagents is essential. Futhermore, obtaining operating parameters for site remediation application through various bench-scale tests is also important. In this research a series of organic acids (acetic, citric, oxalic, and succinic acids) were tested for flushing capability. Copper-contaminated natural soil was used as a test medium, and flushing experiments were performed with batch system. All the organic acids used did not provide effective flushing conditions at concentration of 1 mM. At the acid concentration of 50 and 100 mM copper was removed efficiently although 50 and 100 mM did not show any significant differences in removal efficiencies. Citric acid and oxalic acid removed copper more efficiently than the others, and especially, citric acid showed over 87% of removal efficiency of copper at near neutral pH of 5 to 7. Speciation of extracted copper using GEOCHEM simulation showed majority of extracted copper existed as complexed with organic acids and only small portion of organic acids were complexed with copper indicating promising application of soil flushing with organic acid to heavy metal-contaminated site remediation.

  • PDF

Remediation of Heavy Metal Contaminated Soil by Washing Process (세척을 통한 중금속(Cd, Zn)으로 오염된 토양의 정화)

  • 백정선;현재혁;조미영;김수정
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 2000
  • Several chemical washing procedures were applied to Zn and Cd contaminated soil. Batch and column tests were performed to determine the metal extraction efficiency as a function of pH and concentration. Washing efficiencies by water and NaOH are very low but those by HCI, EDTA and Oxalic acid are high. The most efficient washing occurs in case of using HCI because heavy metal is ionized easily at the condition of low pH. EDTA and Oxalic acid are also effective to extract Zn and Cd because they have a high complexation affinity for heavy metals forming active surface complexes. More Zn is released than Cd is and release trend is increased as pH is decreased and concentration of washing solution is increased. When heavy metal contaminated soil is remediated, HCI and EDTA are more effective to remove Zn than others are. Meanwhile HCI and Oxalic acid are more effective to remove Cd than others are.

  • PDF

Influence of Reactive Media Composition and Chemical Oxygen Demand as Methanol on Autotrophic Sulfur Denitrification

  • Qambrani, Naveed Ahmed;Oh, Sang-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1155-1160
    • /
    • 2012
  • Sulfur-utilizing autotrophic denitrification relies on an inorganic carbon source to reduce the nitrate by producing sulfuric acid as an end product and can be used for the treatment of wastewaters containing high levels of nitrates. In this study, sulfur-denitrifying bacteria were used in anoxic batch tests with sulfur as the electron donor and nitrate as the electron acceptor. Various medium components were tested under different conditions. Sulfur denitrification can drop the medium pH by producing acid, thus stopping the process half way. To control this mechanism, a 2:1 ratio of sulfur to oyster shell powder was used. Oyster shell powder addition to a sulfur-denitrifying reactor completely removed the nitrate. Using 50, 100, and 200 g of sulfur particles, reaction rate constants of 5.33, 6.29, and $7.96mg^{1/2}/l^{1/2}{\cdot}h$ were obtained, respectively; and using 200 g of sulfur particles showed the highest nitrate removal rates. For different sulfur particle sizes ranging from small (0.85-2.0 mm), medium (2.0-4.0 mm), and large (4.0-4.75 mm), reaction rate constants of 31.56, 10.88, and $6.23mg^{1/2}/l^{1/2}{\cdot}h$ were calculated. The fastest nitrate removal rate was observed for the smallest particle size. Addition of chemical oxygen demand (COD), methanol as the external carbon source, with the autotrophic denitrification in sufficiently alkaline conditions, created a balance between heterotrophic denitrification (which raises the pH) and sulfur-utilizing autotrophic denitrification, which lowers the pH.

Effect of the Shape and Size of Quorum-Quenching Media on Biofouling Control in Membrane Bioreactors for Wastewater TreatmentS

  • Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Kwon, Hyeokpil;Nahm, Chang Hyun;Lee, Chung-Hak;Park, Pyung-Kyu;Choo, Kwang-Ho;Lee, Jung-Kee;Oh, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1746-1754
    • /
    • 2016
  • Recently, spherical beads entrapping quorum quenching (QQ) bacteria have been reported as effective moving QQ-media for biofouling control in MBRs for wastewater treatment owing to their combined effects of biological (i.e., quorum quenching) and physical washing. Taking into account both the mass transfer of signal molecules through the QQ-medium and collision efficiencies of the QQ-medium against the filtration membranes in a bioreactor, a cylindrical medium (QQ-cylinder) was developed as a new shape of moving QQ-medium. The QQ-cylinders were compared with previous QQ-beads in terms of the QQ activity and the physical washing effect under identical loading volumes of each medium in batch tests. It was found that the QQ activity of a QQ-medium was highly dependent on its specific surface area, regardless of the shape of the medium. In contrast, the physical washing effect of a QQ-medium was greatly affected by its geometric structure. The enhanced anti-biofouling property of the QQ-cylinders relative to QQ-beads was confirmed in a continuous laboratory-scale MBR with a flat-sheet membrane module.

Effects of Adding UV and H2O2 on the Degradation of Pharmaceuticals and Personal Care Products during O3 Treatment

  • Kim, Il-Ho;Kim, Seog-Ku;Lee, Hyun-Dong;Tanaka, Hiroaki
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.131-136
    • /
    • 2011
  • The degradation of 30 pharmaceuticals and personal care products (PPCPs) subjected to $O_3$, $O_3$/UV, and $O_3/H_2O_2$ treatments were investigated using semi-batch tests and evaluated by their pseudo-first-order rate constants. The additional application of UV or $H_2O_2$ during $O_3$ treatment significantly improved the degradation rate of most of the PPCPs. At the same $O_3$ feed rate, $O_3$/UV treatment exhibited much higher PPCP degradation efficiency than that of $O_3$ treatment. This was probably due to degradation of the PPCPs by $O_3$, direct UV photodegradation, and OH radicals that formed from the photodegradation of $O_3$ during $O_3$/UV treatment. PPCP degradation by $O_3$ was also promoted by adding $H_2O_2$ during the $O_3$ treatment. However, when the initial $H_2O_2$ concentration was high during $O_3$ treatment, OH radicals were likely to be scavenged by excess $H_2O_2$, leading to low PPCP degradation. Therefore, it is important to determine the appropriate $H_2O_2$ dosage during $O_3$ treatment to improve PPCP degradation when adding $H_2O_2$ during $O_3$ treatment.

Evaluating Feeding of Organic Waste and Stirring Interval to Optimize Anaerobic Digestion

  • Kim, Gi-Woong;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.366-376
    • /
    • 2014
  • Purpose: In the process of anaerobic digestion, stirring of the digester and feeding of organic waste into the digester have been considered important factors for digestive efficiency. The objective of this study was to determine the most appropriate conditions for both stirring interval of the digester and organic feeding frequency in order to improve anaerobic digestion performance. Methods: A 5-L anaerobic digester was used to conduct continuous batch tests to process swine manure and food waste. Four different stirring intervals of the digester were used: 5 min/h, 10 min/2 h, 15 min/3 h, and 20 min/4 h. Results: The application of swine manure to the digester every 5 min/h resulted in the highest production of biogas as well as the highest removal rates of volatile solids (VS) and total chemical oxygen demand. Stirring the digester with a mixture of swine manure and food waste at intervals of 5min/h and 10min/2 h produced the highest biogas yields of 515.3 mL/gVS and 521.1 mL/gVS, respectively. To test different supply frequencies, organic waste was added to the digester in either a 12-hor 24-h cycle. The 24-h cycle produced 1.5-fold greater biogas production than that during the 12-h cycle. Conclusions: Thus, from the above results, to optimize anaerobic digestion performance, the ideal stirring condition must be 5min/h for swine manure feeding and 10min/2h for co-digestion of food waste and swine manure in a 24-h cycle.

A Vision Based Guideline Interpretation Technique for AGV Navigation (AGV 운행을 위한 비전기반 유도선 해석 기술)

  • Byun, Sungmin;Kim, Minhwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1319-1329
    • /
    • 2012
  • AGVs are more and more utilized nowadays and magnetic guided AGVs are most widely used because their system has low cost and high speed. But this type of AGVs requires high infrastructure building cost and has poor flexibility of navigation path layout changing. Thus it is hard to applying this type of AGVs to a small quantity batch production system or a cooperative production system with many AGVs. In this paper, we propose a vision based guideline interpretation technique that uses the cheap, easily installable and changeable color tapes (or paint) as a guideline. So a vision-based AGV with color tapes is effectively applicable to the production systems. For easy setting and changing of AGV navigation path, we suggest an automatic method for interpreting a complex guideline layout including multi-branches and joins of branches. We also suggest a trace direction decision method for stable navigation of AGVs. Through several real-time navigation tests with an industrial AGV installed with the suggested technique, we confirmed that the technique is practically and stably applicable to real industrial field.

Effects of pH, Temperature, and Dissolved Oxygen on Phosphorus Release from Marine Sediment to Seawater (해양퇴적물 인 용출에 미치는 pH, 온도, 용존 산소 농도의 영향)

  • Cheon, Hyo-Chang;Nam, Se-Yong;Kim, Sang-Hyoun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Understanding the behavior of pollutants in the marine environment is essential for coping with the marine pollution problems such as eutrophication. In this study, the effects of environmental parameters on phosphorus release from marine sediment to sea water were investigated. The environmental parameters such as pH in the range of 7 to 9, temperature from 10 to 20C and dissolved oxygen levels (DO) renging 0.7 to 7.0mg/L were examined. Phosphorus release data were taken from batch tests excluding biotic effects, and analyzed using a first-order kinetic model. The effects of environmental parameters were quantified using a statistical methodology. High pH, high temperature, and low DO increased phosphorus release from the sediment to sea water. pH from 7 to 9, temperature from 10 to $20^{\circ}C$, or DO from 7.0 to 0.7 mg/L magnified the equilibrium phosphorus concentration up to 2~3 times.

Recovery of Nickel from sulfuric acid solution using Lewatit TP 220 ion exchange resin (황산용액(黃酸溶液)으로부터 이온교환수지(交換樹脂) Lewatit TP 220에 의한 니켈의 회수(回收))

  • Kang, Nam-Hee;Park, Kyung-Ho;Parhi, P.K.
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.28-36
    • /
    • 2011
  • The adsorption of nickel(Ni) from sulfuric acid solution was carried out by ion exchange method. A series of batch tests in synthetic solutions were carried out using Lewatit Monoplus TP 220 resin. The following experimental parameters, such as temperature, shaking rate, reaction time, pH, resin dosage and concentration of nickel ions etc. were investigated to establish the effective optimum conditions of nickel adsorption. The solution pH(2.0~5.0) and shaking rate had little effects on the adsorption of nickel and adsorption time of 72hours was required to reach equilibrium. The experimental results show a good agreement with Feundlich isotherm and pseudo-second order reaction. The adsorption behavior of Ni obtained from synthetic solution was compared with that of waste electroplating solution. Elution of nickel from loaded resin increased with increase in $H_2SO_4$ concentration.

Development of Predication Model of Early-Age Concrete Strength by Maturity Concept (성숙도 개념을 이용한 콘크리트 초기강도 예측 모델 개발 연구)

  • 오병환;이명규;홍경옥;김광수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.197-207
    • /
    • 1996
  • Maturity is expressed as the integral of time and temperature of concrete above a datum temperature. The maturity concept proposes that concrete of the same mix at the same maturity has the same strength, whatever combination of temperature and time makes up that maturity. In this study, the Nurse-Saul function which was proposed to account for the effects of temperature and time on strength developrnent is used in computing maturity. After existing various functions are considered to relate concrete strength to the maturity value, new strength-maturity function is proposed. Tests ;ire conducted in order to determine d datum temperature and compare prechction value with measured concrete strength. The constants in proposed prediction equation are determined from test results, and the equation is adopted to predict the strength of slab. The slab was cast in the laboratory from the same batch of mold, and cores are cut from slab in order to estimate the actual strength. These values are used to compare with predicted value. The present study allows more realistic determination of early-age strength of concrete and can be efficiently used to control the quality in actual construction.