DOI QR코드

DOI QR Code

Recovery of Nickel from sulfuric acid solution using Lewatit TP 220 ion exchange resin

황산용액(黃酸溶液)으로부터 이온교환수지(交換樹脂) Lewatit TP 220에 의한 니켈의 회수(回收)

  • Kang, Nam-Hee (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Park, Kyung-Ho (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Parhi, P.K. (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM))
  • 강남희 (한국지질자원연구원 광물자원연구본부) ;
  • 박경호 (한국지질자원연구원 광물자원연구본부) ;
  • Received : 2001.06.14
  • Accepted : 2011.10.19
  • Published : 2011.12.31

Abstract

The adsorption of nickel(Ni) from sulfuric acid solution was carried out by ion exchange method. A series of batch tests in synthetic solutions were carried out using Lewatit Monoplus TP 220 resin. The following experimental parameters, such as temperature, shaking rate, reaction time, pH, resin dosage and concentration of nickel ions etc. were investigated to establish the effective optimum conditions of nickel adsorption. The solution pH(2.0~5.0) and shaking rate had little effects on the adsorption of nickel and adsorption time of 72hours was required to reach equilibrium. The experimental results show a good agreement with Feundlich isotherm and pseudo-second order reaction. The adsorption behavior of Ni obtained from synthetic solution was compared with that of waste electroplating solution. Elution of nickel from loaded resin increased with increase in $H_2SO_4$ concentration.

황산용액 중에 존재하는 니켈을 회수하기 위해 이온교환수지법을 이용한 기초연구를 수행하였다. 제조된 모의 니켈(Ni)용액에 독일 Lanxess사(社)의 Lewatit Monoplus TP 220를 이용하여 회분식 실험을 하였다. 흡착반응에 영향을 미치는 온도, 교반속도, 반응시간, pH, 이온교환수지 양, 니켈이온농도 등에 대해 고찰하였다. 초기 pH(2.0~5.0)와 교반속도는 니켈의 흡착에 거의 영향을 미치지 않았으며, 평형에 도달하기 위하여 72시간의 시간이 필요했다. 평형실험결과 Freundlich 흡착등온식에 적합하였고, 흡착반응속도는 유사 2차 반응 모델(pseudo-second order)로 잘 모사되었다. 한편 니켈을 함유한 실제 도금세정폐액의 흡착 실험을 행하여 모의용액의 흡착거동과 비교하였고, 흡착된 니켈은 황산 농도가 높아짐에 따라 수지로부터 효과적으로 용리되었다.

Keywords

References

  1. Y.S. Huang, X.T. Zenga, X.F. Hu, F.M. Liu. 2004 : Corrosion Resistance Properties of Electroless Nickel Composite Coatings, Electrochimica Acta, 49, pp. 4313-4319. https://doi.org/10.1016/j.electacta.2004.04.023
  2. 윤용수, 2001 : 전기투석에 의한 니켈도금 폐수처리 공정에서 한계전류밀도와 불균질 이온교환막의 재생, 대한위생학회지, 16(2), pp. 38-46.
  3. 하재남, 2004 : 환경공학, 제3장, pp168-177, 동화기술, 서울, 대한민국.
  4. 박수현, 2009 : 결정화 공정을 이용한 폐에칭액의 인산 재활용 기술, The plant Journal, 5(2), pp. 6-13.
  5. 소순섭, 안재우, 2008 : 황산동전해액 중 은 제거를 위한 연구, J. of Korean Inst. of Resources Recycling, 17(5), pp. 60-65.
  6. 나규환, 2003 : 수질오염학, 제7장, pp. 207-211, 신광문화사, 서울, 대한민국.
  7. 김경수, 김석환, 정일현, 2001 : 전기투석장치의 니켈 도금 폐수처리를 위한 불균질 이온교환막의 제조, J. Korean Ind. Eng. Chem, 12(5), pp. 560-568.
  8. NghiemVan Lee et al., 2008 : Ion Exchange of Copper from Sulphate Effluent using DOWEX G-26, J. of Korean Inst. of Resources Recycling, 17(4), pp. 37-46.
  9. Nadir Dizge, Bulent Keskinler, Hulusi Barlas, 2009 : Sorprion of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin, J. of Hazardous Materials, 167, pp. 915-926. https://doi.org/10.1016/j.jhazmat.2009.01.073
  10. Ruey-Shin Juang, Hsiang-Chien Kao, Wei Chen, 2006 : Column removal of Ni(II) form synthetic electroplating waste water using a strong-acid resin, Separation and Purification Technology, 49, pp. 36-42. https://doi.org/10.1016/j.seppur.2005.08.003
  11. Heikki Leinonen, Jukka Lehto, 2000 : Ion-exchange of nickel by iminodiacetic acid chelating resin Chelex 100, Reactive & Functional Polymers, 43, pp. 1-6. https://doi.org/10.1016/S1381-5148(98)00082-0
  12. Zaimawati Zainol, Michael J.Nicol, 2009 : Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings, Hydrometallugy, 96, pp. 283-287. https://doi.org/10.1016/j.hydromet.2008.11.005
  13. A. Deepatnana, M. Valix, 2008 : Desalination, 218, pp. 334-342. https://doi.org/10.1016/j.desal.2007.02.029
  14. Saima Q. Menon et al., 2007 : The effecacy of nitrosonaphthol funcionalized XAD-16 resin for the preconcentration/sorption of Ni(II) and Cu(II) ions, Talanta, 72, pp. 1738-1745. https://doi.org/10.1016/j.talanta.2006.12.017
  15. 양현수 외, 1998 : 원자로 일차 냉각제 계통내 탈염공정의 양이온 교환수지상에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 흡착 특성, J. of Korean Ind. & Eng. Chemistry, 10(1), pp. 51-57.
  16. F. D. Mendes, A. H. Martins, 2004 : Selective sorption of nickel and cobalt from sulphate solutions using chelating resins, Int. J. Miner. Process., 74, pp. 359-371. https://doi.org/10.1016/j.minpro.2004.04.003
  17. Nadir Dizge, Bulent Keskinler, Hulusi Barlas, 2009 : Sorprion of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin, J. of Hazardous Materials, 167, pp. 915-926. https://doi.org/10.1016/j.jhazmat.2009.01.073
  18. K. Vasanth Kumar and S. Sivanesan, 2006 : Pseudo second order kinetic models for safranin onto rice husk: comprison of linear and non-linear regression analysis, Process biochemistry, 41, pp. 1198-1202. https://doi.org/10.1016/j.procbio.2005.11.014
  19. Magdalena Greluk, Zbigniew Hubicki, 2010 : Kinetics, isotherm an thermodynamic studies of Reactive Black 5 removal by acid acrylic resins, Chemical Engineering Journal, 162, pp. 919-926. https://doi.org/10.1016/j.cej.2010.06.043

Cited by

  1. Modeling of Ion Exchange Processes to Optimize Metal Removal from Complex Mine Water Matrices vol.13, pp.21, 2011, https://doi.org/10.3390/w13213109