• Title/Summary/Keyword: batch test

Search Result 482, Processing Time 0.025 seconds

Application of Time-series Cross Validation in Hyperparameter Tuning of a Predictive Model for 2,3-BDO Distillation Process (시계열 교차검증을 적용한 2,3-BDO 분리공정 온도예측 모델의 초매개변수 최적화)

  • An, Nahyeon;Choi, Yeongryeol;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.532-541
    • /
    • 2021
  • Recently, research on the application of artificial intelligence in the chemical process has been increasing rapidly. However, overfitting is a significant problem that prevents the model from being generalized well to predict unseen data on test data, as well as observed training data. Cross validation is one of the ways to solve the overfitting problem. In this study, the time-series cross validation method was applied to optimize the number of batch and epoch in the hyperparameters of the prediction model for the 2,3-BDO distillation process, and it compared with K-fold cross validation generally used. As a result, the RMSE of the model with time-series cross validation was lower by 9.06%, and the MAPE was higher by 0.61% than the model with K-fold cross validation. Also, the calculation time was 198.29 sec less than the K-fold cross validation method.

Development and Verification Methodology for Small Civil Unmanned Aerial Vehicle System based on Open System Architecture (개방형 시스템 아키텍처 기반의 소형 민간 무인항공기 시스템 개발 및 검증 방법)

  • Jo, Hyun-Chul;Park, Keunyoung
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.32-43
    • /
    • 2020
  • The Unmanned Aerial Vehicle(UAV) system has been mainly used for military domains, but it also widely applied to used in the civilian domains. In civilian domains, low-cost and small-sized UAV systems are mainly applied in various industries. The software that operates UAV systems has a lot of common functions. However, even though there are many common functionalities of the software, changing the devices may cause a problem requiring software modification. These problems degrade interoperability, modularity and portability in UAV systems. In order to solve the problems, an Open System Architecture(OSA) has been proposed. In this paper, we propose a UAV system software architecture based on Future Airborne Capability Environment(FACE) standard. Our system can support UAV systems of various platforms in the civilian domains, which is supplied in small quantity batch production. And it has the advantages of software consolidation and portability. Finally, We describe the development and conformant methodology of the software based on the FACE standard using open development tools.

  • PDF

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

Investigation on the Leaching Potential of Water-Soluble Metals from Bottom Ashes in Coal-fired Power Plants (화력발전소 바닥재의 수용성 금속이온 용출가능성 조사)

  • Seo, Hyosik;Koh, Dong-Chan;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Bottom ash generated from thermal power plants is mainly disposed in landfills, from which metals may be leached by infiltrating water. To evaluate the effect of metals in leachate on soil and groundwater, we characterized bottom ash generated from burning cokes, bituminous coal, the mixture of bituminous coal and wood pellets, and charcoal powder. The bottom ash of charcoal powder had a relatively large particle size, and its wood texture was well-preserved from SEM observation. The bottom ash of charcoal powder and wood pellets had relatively high K concentration from total element analysis. The eluates of the bottom ash samples had appreciable concentrations of Ca, Al, Fe, SO4, and NO3, but they were not a significant throughout the batch test. Therefore, it is considered that there is low possibility of soil and groundwater contamination due to leaching of metal ions and anions from these bottom ash in landfills. To estimate the trend of various trace elements, long-term monitoring and additional analysis need to be performed while considering the site conditions, because they readily adsorb on soil and aquifer substances.

Adsorption Characteristics Analysis of Trimethoprim in Aqueous Solution by Magnetic Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (Box-Behnken Design을 이용한 수용액 중의 Trimethoprim에 대한 폐감귤박 자성활성탄의 흡착 특성)

  • Lee, Chang-Han;Lee, Min-Gyu;Hu, Chul-Goo;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.691-706
    • /
    • 2022
  • Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, ΔH and ΔG, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.

Effects of DCM Column Properties in Softground on Stabilities of Underground Roadways (연약지반내 DCM 개량체의 특성이 지하차도의 안정성에 미치는 영향)

  • Ahn, Tae-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.77-84
    • /
    • 2010
  • In planning underground roadway foundation on soft ground, deep cement mixing method (DCM) is employed. The proper mixing ratio using batch test and replacement rates that meet strength criteria are used for deep cement mixing column. Stiffness ratio and distance between deep cement mixing columns (C.T.C) are varied to find out influences on stress, displacement, and differential settlement. The replacement ratios that meet settlement criteria are 10~35%. As stiffness varies, stress reaches at 769.kPa that exceed criteria due to stress concentration when stiffness ratio difference is over 30. Also, when C.T.C is 5 m, stress spreads to soils, so C.T.C need to be considered carefully. The vertical displacement is 0.6~1.56 cm, and angular distortion is 1/909~1/510.

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Effect of Fouling Reducing Additives on Membrane Filtration Resistance of Activated Sludge (막오염 감소제가 활성슬러지의 여과저항에 미치는 영향)

  • Chung, Tai Hak;Lee, Jong Hoon;Kim, Hyoung Gun;Bae, Young Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.406-413
    • /
    • 2012
  • Effect of three additives, chitosan, ferric chloride, and MPE50 on membrane fouling reduction was studied. They were introduced with various dosing rate into activated sludge, and changes in filtration resistance measured by the batch cell filtration test were evaluated. Both the filtration resistance and the specific cake resistance were minimized at 20 mg/g-MLSS with chitosan, 70 mg/g-MLSS with ferric chloride, and 20 mg/g-MLSS with MPE50 addition, respectively. Introduction of the additives into the activated sludge resulted in reduction of not only cake resistance, but also fouling resistance. However, the chitosan addition to three different activated sludge resulted in three different optimal dose of 10, 20, 30 mg/g-MLSS, respectively. This implies that the optimal dose is dependent on sludge characteristics rather than a constant value. Overdose above the optimal dosage always aggravated filterability in all cases. Zeta potential of sludge flocs, relative hydrophobicity, floc size distribution, soluble EPS concentration and supernatant turbidity were measured in order to analyze fouling reduction mechanism. Nearly neutral surface charge along with the largest particle size was observed at the optimal dose. This could be explained by particle destabilization and restabilization mechanism as positively charged additives were injected into sludge flocs of negative surface charge. Both soluble EPS concentration and supernatant turbidity also showed the lowest value at the optimal dose. These foulants are believed to be coagulated and entrapped in sludge flocs during flocculation. Chitosan and MPE50 which are cationic polymeric substances showed higher reduction in both soluble EPS and fine particles comparing with ferric chloride.

Evaluation of Stabilization Capacity for Typical Amendments based on the Scenario of Heavy Metal Contaminated Sites in Korea (국내 중금속 부지오염시나리오를 고려한 안정화제의 중금속 안정화 효율 규명)

  • Yang, Jihye;Kim, Danu;Oh, Yuna;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.21-33
    • /
    • 2021
  • The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site. From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.

Characteristic evaluation of anaerobic co-digestion using desulfurization sludge and primary sludge (탈황슬러지 및 생슬러지를 이용한 혐기성 병합소화 특성평가)

  • Seulki Koo;Woojin Chung;Soonwoong Chang;Myoungsoo Park
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.51-58
    • /
    • 2023
  • In this study, anaerobic co-digestion was carried out using desulfurization sludge and sewage sludge (primary sludge) to evaluate the effects of sulfur compounds in anaerobic digestion. The experiment was carried out in the form of a batch test using 500 mL duran bottle, and the mixing ratio of the feedstock was selected based on the ratio of COD/SO4. As a result of the experiment, it was confirmed that the amount of biogas generated and the yield decreased at the mixing ratio of COD/SO4 20 or less. In particular, below COD/SO4 10, it was lower than seed (283.5 mL) which was set without feedstock to correct biogas generated by itself from seed sludge. Methane yield tended to decrease from a ratio of COD/SO4 20 or less to 0.135 m3/kg VS compared to 0.396 m3/kg VS of COD/SO4 50. In addition, compared to 0.0097 m3/kg VS of hydrogen sulfide yield from COD/SO4 50, the ratio of COD/SO4 20 increased sharply to 0.0223 m3/kg VS, and in particular, the highest result was 0.0855 m3/kg VS in COD/SO4 10. Based on these results, it is judged that the effect of sulfide in anaerobic digestion can have an adverse effect if the COD/SO4 ratio decreases to less than 20.