• Title/Summary/Keyword: batch size

Search Result 431, Processing Time 0.029 seconds

Minimization of Total Weighted Earliness and Tardiness on a Single Burn-In Oven U sing a Genetic Algorithm (단일 Burn-In Oven에서 Total Weighted Earliness와 Tardiness를 최소화하기 위한 유전자 알고리즘의 활용)

  • Park, You-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.21-28
    • /
    • 2008
  • 본 연구는 반도체 제조공정에서 사용되는 단일 Burn-In oven에서의 Total weighted earliness와 Tardiness를 최소화하기 위한 생산 스케줄링을 결정하는 문제를 다룬다. 본 연구에서는 모든 작업은 상시에 시작가능하고 각각은 서로 다른 가중치를 가지고 있다고 가정하였다. 일반적으로 단일 Burn-In oven은 다양한 작업들이 동시에 가능한 Batch processing 기계이다. 따라서 다양한 작업들로 구성된 하나의 Batch의 Processing time은 그 Batch 내에 있는 가장 긴 Processing time을 가지는 작업에 의해 결정된다. 본 연구에서 Batch size는 미리 결정되지 않은 상황이라고 가정한 후, 최적의 Batch 개수와 작업의 순서를 결정하기 위해 유전자 알고리즘을 적용하였다. 수리적 예제를 통해서 다양한 접근방법의 성능들을 비교한 결과, 유전자 알고리즘이 Total weighted earliness와 Tardiness를 최소화하는데 가장 뛰어난 성능을 가지고 있음을 알 수 있다.

Optimal Designofa Process-Inventory Network Under Infrequent Shutdowns (간헐적인 운전시간 손실하에 공정-저장조 망구조의 최적설계)

  • Yi, Gyeongbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.563-568
    • /
    • 2013
  • The purpose of this study is to find the analytic solution for determining the optimal capacity (lot-size) of a batch-storage network to meet the finished product demand under infrequent shutdowns. Batch processes are bound to experience random but infrequent operating time losses. Two common remedies for these failures are duplicating another process or increasing the process and storage capacity, both of which are very costly in modern manufacturing systems. An optimization model minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units is pursued with the framework of a batch-storage network of which flows are susceptible to infrequent shutdowns. The superstructure of the plant consists of a network of serially and/or parallel interlinked batch processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors.A novel production and inventory analysis method, the PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model stems from the fact it provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance a proper and quick investment decision at the early plant design stagewhen confronted with diverse economic situations.

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

  • Muthuvelu, Nithiapidary;Chai, Ian;Chikkannan, Eswaran;Buyya, Rajkumar
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.299-320
    • /
    • 2011
  • The overhead of processing fine-grain tasks on a grid induces the need for batch processing or task group deployment in order to minimise overall application turnaround time. When deciding the granularity of a batch, the processing requirements of each task should be considered as well as the utilisation constraints of the interconnecting network and the designated resources. However, the dynamic nature of a grid requires the batch size to be adaptable to the latest grid status. In this paper, we describe the policies and the specific techniques involved in the batch resizing process. We explain the nuts and bolts of these techniques in order to maximise the resulting benefits of batch processing. We conduct experiments to determine the nature of the policies and techniques in response to a real grid environment. The techniques are further investigated to highlight the important parameters for obtaining the appropriate task granularity for a grid resource.

Evaluation of Classification and Accuracy in Chest X-ray Images using Deep Learning with Convolution Neural Network (컨볼루션 뉴럴 네트워크 기반의 딥러닝을 이용한 흉부 X-ray 영상의 분류 및 정확도 평가)

  • Song, Ho-Jun;Lee, Eun-Byeol;Jo, Heung-Joon;Park, Se-Young;Kim, So-Young;Kim, Hyeon-Jeong;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2020
  • The purpose of this study was learning about chest X-ray image classification and accuracy research through Deep Learning using big data technology with Convolution Neural Network. Normal 1,583 and Pneumonia 4,289 were used in chest X-ray images. The data were classified as train (88.8%), validation (0.2%) and test (11%). Constructed as Convolution Layer, Max pooling layer size 2×2, Flatten layer, and Image Data Generator. The number of filters, filter size, drop out, epoch, batch size, and loss function values were set when the Convolution layer were 3 and 4 respectively. The test data verification results showed that the predicted accuracy was 94.67% when the number of filters was 64-128-128-128, filter size 3×3, drop out 0.25, epoch 5, batch size 15, and loss function RMSprop was 4. In this study, the classification of chest X-ray Normal and Pneumonia was predictable with high accuracy, and it is believed to be of great help not only to chest X-ray images but also to other medical images.

Comparable Influencing Factors to evaluate the Phosphate Removal on the Batch and the fix-bed Column by Converter Slag (회분식과 연속흐름 칼럼에서 전로슬래그에 의한 인제거 영향에 미치는 요소에 관한 연구)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.5
    • /
    • pp.565-573
    • /
    • 2015
  • The influencing factors to remove phosphate were evaluated by converter slag (CS). Experiments were performed by batch tests using different CS sizes and column test. Solutions were prepared at the different pH and concentrations. The maximum removal efficiency was obtained over 98% with the finest particle size, $CS_a$ within 2 hours in batch tests. The removal efficiency was increased in the order of decreasing size with same amount of CS for any pH of solutions. The adsorption data were well fitted to Freundlich isotherm. From the column experiment, the specific factors were revealed that the breakthrough removal capacity (BRC) $x_b/m_{cs}$, was decreased by increasing the influent concentration. The breakthrough time, tb was lasted shorter as increasing the influent concentration. The pH drop simultaneously led to lower BRC drop during the experimental hours. The relation between the breakthrough time and the BRC to influent concentration was shown in the logarithmic decrease. Results suggested that the large surface area of CS possessed a great potential for adsorptive phosphate removal. Consequently particle size and initial concentration played the major influencing factors in phosphate removal by converter slag.

An Efficient Signature Batch Verification System for VANET (VANET를 위한 효율적인 서명 일괄 확인 시스템)

  • Lim, Ji-Hwan;Oh, Hee-Kuck;Kim, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.17-31
    • /
    • 2010
  • In VANET (Vehicular Ad hoc NETwork), vehicles can efficiently verify a large number of signatures efficiently using batch verification techniques. However, batch verification performed independently in each vehicle raises many redundant verification cost. Although, an RSU (Road Side Unit) can perform the batch verification as a proxy to reduce this cost, it additionally requires an efficient method to identify invalid signatures when the batch verification fails. In this paper, we analyze several ways of constructing a distributed batch verification system, and propose an efficient distributed batch verification system in which participating vehicles perform batch verification in a distributive manner for a small size signature set. In our proposed system, each node can report the batch verification result or the identified invalid signatures list and the RSU who received these reports can identify the invalid signatures and efficiently exclude them.

Determination of Optimum Batch Size and Fuel Enrichment for OPR1000 NPP Based on Nuclear Fuel Cycle Cost Analysis (OPR1000 발전소의 핵연료 주기비분석을 통한 최적 배취 크기와 핵연료 농축도 결정)

  • Cho, Sung Ju;Hah, Chang Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.256-262
    • /
    • 2014
  • Cycle length of domestic nuclear power plants is determined by the demand-supply plan of utility company. The target cycle length is achieved by adjusting the number of feed fuel assembly and fuel enrichment. Traditionally, utility company first select the number of feed fuel assembly and then find out the fuel enrichment to achieve the special cycle length. But it is difficult to find out if this method is most economical than any other combinations of the enrichment and batch size satisfying the same cycle length. In this paper, core depletion calculation is performed to find out the optimum combination of the enrichment and batch size for given target cycle length in terms of fuel cycle cost using commercial core design code; CASMO/MASTER code. To minimize the uncertainty resulting from transition core analysis, levelized fuel cycle cost analysis was applied to the equilibrium cycle core in order to determine the optimum combination. The sensitivity study of discount rate was also carried out to analyze the levelized fuel cycle cost applicable to countries with different discount rates. From the levelized fuel cycle cost analysis results, the combination with smaller batch size and higher fuel enrichment becomes more economical as the discount rate becomes lower. On the other hand, the combination with higher batch size and lower fuel enrichment becomes more economical as the discount rate becomes higher.

Batch Scheduling Problem with Multiple Due-dates Constraints

  • Mohri, Shintaro;Masuda, Teruo;Ishii, Hiroaki
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • This paper describes the issue of batch scheduling.In food production, the lead-time from produc-tion to sale should be decreased becausefreshness of the product is important. Products are shipped at diverse times depending on a demand of sellers, because the types of sellers has become diversified such as super-markets, convenience stores and etc. production of quantity demanded must be completed by time to ship it then. The authors consider a problem with due-dates constraints and construct the algorithm to find the opti-mal schedule that satisfy the due-dates constraint, batch size constraint, inventory time constraint and mini-mize total flow time.

Optimal design of batch-storage serial trains considering setup and inventory holding cost (준비비와 재고비를 고려한 직렬 비연속 공정과 중간 저장조의 최적설계)

  • Lee, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.398-405
    • /
    • 1997
  • This article presents a new model which is called Periodic Square-Wave(PSW) to describe the material flow of the periodic processes involving intermediate buffer. The material flows incoming into and outgoing from the intermediate buffer are assumed to be periodic square shaped. PSW model gives the same result as that of Economic Production Quantity(EPQ) model for determining optimal lot size of single stage batch storage system. However, for batch storage serial train system, PSW model gives a different optimal solution of about 6 % reduced total cost. PSW model provides the more accurate information on inventory and production system than the classical approach by maintaining simplicity and increasing computational burden.

  • PDF

Preparation of Highly Cross-linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part I. Batch Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.244-255
    • /
    • 2007
  • Nucleation is the most sensitive stage in the preparation of highly cross-linked, monodisperse microspheres by dispersion polymerization, since the addition of a small amount of cross-linker results in particle deformation and coagulation. To overcome these problems, $5\;{\mu}m$ poly(methyl methacrylate) seed particles prepared by dispersion polymerization were used in the preparation of mono disperse, cross-linked PMMA particles containing up to 7 wt% divinylbenzene by seeded batch dispersion polymerization. Spherical particles with a narrow size distribution containing up to 8 wt% of EGDMA were prepared by seeded multi-batch dispersion polymerization processes. These particles were identified by scanning electron microscopy and DSC.