• Title/Summary/Keyword: basic load

Search Result 1,236, Processing Time 0.025 seconds

Long-term monitoring of super-long stay cables on a cable-stayed bridge

  • Shen, Xiang;Ma, Ru-jin;Ge, Chun-xi;Hu, Xiao-hong
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.357-368
    • /
    • 2018
  • For a long cable-stayed bridge, stay cables are its most important load-carrying components. In this paper, long-term monitoring of super-long stay cables of Sutong Bridge is introduced. A comprehensive data analysis procedure is presented, in which time domain and frequency domain based analyses are carried out. In time domain, the vibration data of several long stay cables are firstly analyzed and the standard deviation of the acceleration of stay cables, and its variation with time are obtained, as well as the relationship between in-plane vibration and out-plane vibration. Meanwhile, some vibrations such as wind and rain induced vibration are detected. Through frequency domain analysis, the basic frequencies of the stay cables are identified. Furthermore, the axial forces and their statistical parameters are acquired. To investigate the vibration deflection, an FFT-based decomposition method is used to get the modal deflection. In the end, the relationship between the vibration amplitude of stay cables and the wind speed is investigated based on correlation analysis. Through the adopted procedure, some structural parameters of the stay cables have been derived, which can be used for evaluating the component performance and corresponding management of stay cables.

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam (U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

A Study on the Mechanical Properties of Artificial Bone Structure Fabricated Using a 3D Printer (3D Printer로 제작된 인공뼈 구조에 대한 기계적 특성에 관한 연구)

  • Heo, Yeong-Jun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.35-41
    • /
    • 2020
  • The structure of the femur bone was analyzed. Moreover, the mechanical strength of the bone was determined by considering two parameters, namely, the outer wall thickness and inner filling density to realize the 3D printing of a cortical bone and spongy bone by using a fused deposition modeling type 3D printer and ABS material. A basic experiment was conducted to evaluate the variation trend in the mechanical strength of the test specimens with the change in the parameters. Based on the results, the parameters corresponding to the highest mechanical strength were selected and applied to the artificial bone, and the mechanical strength of the artificial bones was examined under a load. Moreover, we proposed an approximation method for the 3D printing parameters to enable the comparison of the actual bones and artificial bones in terms of the strength and weight.

A Study of Hydraulic Turbine Design for The Discharge Water Energy Harvesting (방출 수 에너지 하베스팅을 위한 수차 설계에 관한 연구)

  • Cheong, Han Seok;Kim, Chung Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.78-83
    • /
    • 2021
  • We modeled the helical turbine and three modified helical turbines for the structure of the hydraulic turbine for discharge water energy harvesting. A structure that can reduce the load applied to the blade by placing a center plate is our basic concept. The shape was reduced to 1/5, fixed to a size of 240 mm in height and 247 mm in diameter, and modeled by changing the width and the angle of the hydraulic turbine blade. The pipe inner diameter of the simulation pipeline equipment is 309.5 mm, and the simulation section was 4 m in the entire section. The flow velocity was measured for two cases, 1.82 m/s and 2.51 m/s, with the parameters being the amount of power generation, hydraulic turbine's torque, and hydraulic turbine's rotation speed. The measurement results confirmed that the flow velocity at the center, which has no pipe surface resistance, has a great influence on the amount of power generation; therefore, the friction area of the turbine blade should be increased in the center area. In addition, if the center plate is placed on the helical turbine, durability can be improved as it reduces the stress on the blade.

A Study on Performance Assessment of Dry Floors Applied to Long-life Housing (장수명주택에 적용되는 건식바닥의 성능평가에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Soo-Am;Shin, Yun-Ho;Hwang, Eun-Kyoung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.133-143
    • /
    • 2019
  • Various problems regarding the wet floor method such as its complicated process and waste of thermal storage have been raised, but the usage of dry floor recommended for long-life housing has declined due to lack of confidence on the performance of dry floor. The purpose of this study is to secure the credibility of dry floor. Under this purpose, this study considered precedent studies and established directions to secure the performance of long-life housing infill, and thus, 9 performance items (Impact sound, Smoothness, thermal comfort, sensation hardness while walking, falling safety, impact resistance, local compression load, local strength and strain at heating) were drawn. In addition, the experiment was carried out for 5 performances except for legal performance, some dry floor performances and whole spatial performance. As a result, an appropriate result from all performances except was obtained. The performance of dry floor was verified for each item from these results and it is expected to use such results as basic data on dry floor in the future.

A Study on Building an Optimized Defense System According to the Application of Integrated Security Policy Algorithm (통합 보안정책 알고리즘 적용에 따른 최적화 방어 시스템 구축에 관한 연구)

  • Seo, Woo-Seok;Jun, Moon-Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.39-46
    • /
    • 2011
  • This study is conducted to examine the optimal integrated security policy based on network in case of attacks by implementing unique security policies of various network security equipments as an algorithm within one system. To this end, the policies conduct the experiment to implement the optimal security system through the process of mutually integrating the unique defense policy of Firewall, VPN(Virtual Private Network), IDS(Intrusion Detection System), and IPS(Intrusion Prevention System). In addition, this study is meaningful in that it designs integrated mechanism for rapid detection of system load caused by establishment of the security policy and rapid and efficient defense and secures basic network infrastructure implementation.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

A Study on the Helicopter Pilot's Workload Influences by 'Surprise and Startle Effect' in the Abnormal Situation - Comparison by Pilot Certificate (Private and Commercial) - (비정상 상황에서 '놀람과 깜짝놀람의 영향(Surprise and Startle Effect)'이 헬리콥터 조종사의 작업부하(Workload)에 미치는 영향에 관한 연구 - 자격증명(자가용 및 사업용) 조종사의 비교 -)

  • Lee, Seokjong;Lee, Kangseok;Park, Wontae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.44-54
    • /
    • 2022
  • An empirical analysis was conducted on the workload of helicopter pilots flying in high-risk flight environments such as ground obstacles and weather effects at low altitudes. To evaluate the workload, an independent sample t-test was performed using the NASA-TLX evaluation method most suitable for the aviation field, and the workload score was calculated by applying the analytical stratification method (AHP) to compare and analyze private and commercial pilots. There is a significant difference in mean between private and commercial pilots and the result of work load was obtained over 70%. This paper studied the 'surprise and startle effect' on the helicopter field for the first time. In the future, it is intended to contribute to the safe operation of helicopters by presenting a method for effective safety management by utilizing it in the field of education and training for helicopter pilots and providing basic data for preventing accidents caused by human error.

A Study on the Thermo-Mechanical Coupling Analysis to Working Condition of LAM (LAM 가공조건에 따른 열-구조 연성해석)

  • Park, Jeong-Ho;Park, Sung-Ho;Kim, Gwi-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1127-1133
    • /
    • 2022
  • Recently, the use of aircraft structures using Ti alloy (Ti-6Al-4V), a lightweight high-strength alloy material, is rapidly increasing due to the weight reduction of aircraft. However, high-strength materials such as Ti alloys require high energy for cutting and are classified as difficult-to-cut materials. Also, research on Laser Assisted Machining (hereinafter referred to as LAM), a cutting processing technology that utilizes improved machinability, is being actively researched. Therefore, in this paper, in order to confirm the proper temperature distribution using a laser, the finite element method is used to determine the temperature distribution according to the calorific value condition to derive the appropriate condition, and the thermal load generated at this time is used as a structural analysis. It is intended to be used as basic data for LAM processing conditions by measuring the amount of residual stress and thermal deformation caused by heat.

DEVELOPMENT OF PERFORMANCE MEASURES IN ASSET MANAGERMENT FOR BRIDGE MANAGEMENT IN KOREA

  • Cheolwoo Park;Kyung-Hoon Park;Min-Jae Lee;Jung-Sik Kong;Yoon-Koog Hwang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1166-1169
    • /
    • 2009
  • Bridges are exposed to very severe environment and experience, as service life increased, elevated traffic load and traffic flow, in addition to natural disasters. In comparing to other road structures, bridges may cause more significant damage, such as human-involved accidents, to the society in the event of collapse. A certain level of service shall be necessarily secured to assure the minimum safety of users. The cost for manage and preserve bridges will increase gradually and more restrictions will be loaded to efficiently distribute the limited resources, such as monetary budget and human resource etc. In order to enhance performance and serviceability of bridges with the limited resource, asset management technique has been applied into the bridge management system, which capitalizes the road infrastructures including bridges and assess them in accordance with the government finance report. In the application of asset management, there must be a tool for assess the performance of bridges and this study introduces the basic information on the definition and role of performance measures for asset management for bridges. This research suggests future development direction of performance measure for asset management for bridges in Korea.

  • PDF