• Title/Summary/Keyword: basic load

Search Result 1,240, Processing Time 0.031 seconds

Demand Response Program Using the Price Elasticity of Power Demand (전력수요의 가격탄력성을 이용한 수요반응 프로그램)

  • Yurnaidi, Zulfikar;Ku, Jayeol;Kim, Suduk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.76.1-76.1
    • /
    • 2011
  • With the growing penetration of distributed generation including from renewable sources, smart grid power system is needed to address the reliability problem. One important feature of smart grid is demand response. In order to design a demand response program, it is indispensable to understand how consumer reacts upon the change of electricity price. In this paper, we construct an econometrics model to estimate the hourly price elasticity of demand. This panel model utilizes the hourly load data obtained from KEPCO for the period from year 2005 to 2009. The hourly price elasticity of demand is found to be statistically significant for all the sample under investigation. The samples used for this analysis is from the past historical data under the price structure of three different time zones for each season. The result of the analysis of this time of use pricing structure would allow the policy maker design an appropriate incentive program. This study is important in the sense that it provides a basic research information for designing future demand response programs.

  • PDF

Study on Theoretical Research to Reduce Fire Risk of Solar Power System (태양광 발전 시스템의 화재 위험 감소 방안에 관한 이론적 연구)

  • Park, Kyong-Jin;Lee, Guen-Cull;Lee, Bong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.219-224
    • /
    • 2020
  • This study is based on the principle of solar power system and fire breakout. The result of the survey indicates that a solar power system is vulnerable to fire due to lack of maintenance after the installation. Currently the national fire safety agency does not have standards and legal provisions for the installation and maintenance of solar power facilities. Therefore, it increases the risk of fire breakouts as well as possibility of electric shock for the firefighters during fire fighting. This results possible damages to the human and equipments. In this study is proposing an automatic fire extinguishing system to reduce the power generation of solar panels during fire breakouts. Also, propose an over load current alarm system and fire prevention measures for fire fighters. The results of this study will be used as basic data for further fire testing of solar power systems.

A study on the Development of Ground water by the Infiltration Gallery (집적암거에 의한 대류수개발에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3096-3106
    • /
    • 1973
  • As a link in the chain of antidrought measure, our attempt is made to obtain basic informations on the construction of an infiltration gallary which can be supplied with irrigation water by catching of underground water in small river beds, which is economical, permanent and efficient. The experiment was made, concerning the structure of catchment conduits, by constructing a model sand tank $1.5m{\times}5m{\times}1.5m$ in dimension made of reinforced concrete. Various kinds of measuring equipment were attached to the model tank which contains a set of catchment conduits, each of them was made 30cm in diameter and 60cm in length with the ratio of sectional area to total area of influx holes 10:1, 20:1, 30:1. The average size of influx holes was fixed from 0mm to 10mm, 20mm and 30mm in diameter respectively. Obtained results are as follow; (a) In view of the water catchment capacity, manufacturing cost and the antipressure strength of the catchment conduits, it is the best method to decide the total number of influx holes 20 per sq. meter of each tile surface, and the size of influx holes 20mm in diameter, when the conduits have diameter less than 1m. (b) The greatest factor of safety against external load is to arrange the influx holes in a zigzag manner on the tile surface. The most effective formula of arrangement is $S{\geqq}\sqrt{2gd}$ where: s : spacing of opening row. g : spacing of opening line. d : diameter of influs hole.

  • PDF

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

Physical and Mechanical Properties of Blast Furnace Cement Concrete with Polypropylene Fiber (폴리프로필렌 섬유를 보강한 고로시멘트 콘크리트의 물리·역학적 특성)

  • Jun, Hyung Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.151-158
    • /
    • 2012
  • This study will not only prove experimental dynamic properties which are classified to slump, compressed strength, bending strength and toughness index blast-furnace cement concrete with polypropylene (PP) fiber that refer properties and volume of it, but also establish a basic data in order to use PP fiber reinforced blast-furnace cement concrete. The slump didn't changed by PP fiber volume $5kgf/m^3$ because of flexibility of fiber in despite of loose mixing. The reason why the slump decreased steadily by PP fiber volume $3kgf/m^3$ was rising contact surface of water. The compressed strength indicated a range of 19.49~26.32 MPa. The tensile strength indicated a range of 2.10~2.44 MPa. The bending strength was stronger about 3~16 % in case of mixing with PP fiber volume than normal concrete. The flexure strength indicated a range of 4.30~4.83 MPa. The toughness indicated a range of $0{\sim}19.88N{\cdot}mm$ and was stronger about 6.7 times in case of PP fiber volume $9kg/m^3$ than PP fiber volume $1kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the roads of a respectable amount load can have a effect to prevent not only resistance against clack but also rip off failures.

Dynamic Response of 3-D Cable-Stayed Bridge Considering the Sway Vibrational Effect of Stays (케이블 횡진동을 고려한 3차원 사장교의 동적거동)

  • 성익현
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.36-45
    • /
    • 1999
  • The basic idea of cable-stayed girder bridges is the utilization of high strength cables to provide intermediate supports for the bridge girder so that the girder can span a much longer distance. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Techniques required for the static analysis of cable-stayed bridges has been developed by many researchers. However, little work has been done on the dynamic analysis of such structures. To investigate the characteristics of the dynamic response of long-span cable-stayed bridges due to various dynamic loadings likes moving traffic loads. two different 3-D cable-stayed bridge models are considered in this study. Two models are exactly the same in structural configurations but different in finite element discretization. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

  • PDF

Cycle simulation of a triple effect LiBr/water absorption chiller (삼중효용 LiBr/물 흡수식 냉방기의 사이클 시뮬레이션)

  • 조광운;정시영;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Basic design of a 50USRT(175㎾) triple effect absorption chiller driven by hot gas has been carried out for both parallel and series flow cycles. Parallel flow cycle showed higher COP, however, the temperature in the generator was also higher than that in series flow cycle. Dynamic operation behavior of a parallel flow system at off-design conditions, such as the change in heat transfer medium temperature or the construction change of the system components, has been investigated in detail. It was found that the cooling capacity was seriously decreased by reducing hot gas flow rate and UA-value in the high temperature generator. However, the system COP was improved, because thermal load in the system components was reduced. The COP and the cooling capacity was found to be improved as cooling water temperature decreased or chilled water temperature increased. The optimum ratio of solution distribution could be suggested by considering the COP, the cooling capacity and the highest temperature in the system, which is critical for corrosion.

  • PDF

Behavior and Strength of Wall-Slab Connection in SC Structure (SC구조 벽-바닥 접합부의 내력 및 거동 특성)

  • Kim, Hyeong Gook;Kim, Woo Bum;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.347-354
    • /
    • 2008
  • Steel plate-concrete (SC) structure has recently been used in nuclear power structure because of its construction efficiency. In this study, experimental and analytical study to investigate the behavior of the SC structure's wall slab connection was carried out. Experiments were performed for typical SC and RC connections in order to examine the basic difference between each structure. Finite element analysis was performed and the result of the analysis was found to closely reflect the experimental result. By varying the thickness of the shear plate and friction coefficients and the distance of applied load from the wall, the influence of the parameters on the joint strength and failure modes were examined. Finally, it was confirmed that the joint strength formula proposed in th this research gives conservative results.

A Study on the optimal length of air cavity for Solar heat removal with Air-Vent System (일사열 배제를 위한 통기벽체 적정 길이에 대한 검토)

  • Kim, Sang-Jin;Kum, Jong-Soo;Choi, Kwang-Hwan;Shin, Byong-Hwan;Chung, Yong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • Outside wall systems we lost much energy from the dew of thermal bridge and unsuitable adiabatic construction. The air vent wall system can make reduce cooling loads from the outside wall in summer. The basic concept is connected with buoyant force by the difference of density. An external surface of a wall absorbs solar radiation, and transfers it to the air in the cavity. The warmed air gets buoyant force. So the warmed air is released through the top opening and cooler outside air replaces the space in the cavity. So because of the cavity and the openings, the cooling load reduction by natural ventilation is believed to be considerable. The purpose of this study is finding optimal length of air cavity by numerical analyses.