• Title/Summary/Keyword: basic load

Search Result 1,235, Processing Time 0.026 seconds

Characteristics Experiment of Domestic Developed Hydraulic Axial Piston Motor (개발한 국산화 유압 액셜피스톤모터의 특성실험)

  • Yum, Man-Oh;Lee, Sang-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.70-76
    • /
    • 2007
  • The purpose of this study is to analyze the characteristics of a domestic developed hydraulic axial piston motor. An experimental apparatus was constructed and the output torque, the input oil pressure, the input flow rate, the speed of motor and oil temperature were measured. They were measured under both no load and load conditions. The results are as follows; 1. Motion of motor became steady state conditions after 5 seconds. 2. Output torque of motor was proportional to input oil pressure under both load and unload. 3. Speed of motor decreased with increasing load. 4. Oil temperature was almost constant. The results of this study will offer the basic data in designing and operating hydraulic axial piston motors.

Performance Comparison of Butterfly Joints between Manual Member and Pre-cut Member (수가공 및 기계가공 된 나비장 접합부의 성능 비교)

  • Kim, Gwang-Chul;Kim, Jun-Ho
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.3
    • /
    • pp.165-174
    • /
    • 2016
  • To modularize the joints of Hanok, the bending strengths of butterfly joints between pre-cut and manual member were compared. Structural size joints were manufactured and the length, width and thickness of each tenon were produced with different sizes. The ultimate load of pre-cut members was 2 times higher than that of manual members. Degree of anchorage for the joints on pre-cut member was also superior to that of manual member. By the F-test results, a great influence between ultimate load and sizes of tenon was found. In result of multiple regression analysis, the length and thickness of tenon were showed proportion relationships with the ultimate load, but the width of tenon was showed inverse proportion with the ultimate load. The results of this study can be used to identify the relationships among the major influence factors. Futhermore, it might be used as basic data for modularization the joints of Hanok.

A study on the Operating Characteristics of the Capsule-type Ice Storage System (캡슐형 빙축열 시스템의 운전특성에 관한 연구)

  • Kim, Kyung-Hwan;Cho, Sung-Woo;Choi, Jeong-Min;Ha, Suk-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.199-204
    • /
    • 2005
  • The decrease of summer peak electric load of our country is very important. The government is arranging a lot of support policies and statutes. etc. to decrease of peak electric load. And ice storage system is known as one of the alternatives. The purpose of this study is to collect basic data for operating characteristics to plan the most suitable operation of capsule-type ice storage system. The storaging tank is designed to take charge 40% of total cooling load in building, In operation condition the storage tank took charge 50%. Coefficient Of Performance of daily screw refrigerator is around 4.

  • PDF

Experimental Study to fatigue performance of reinforced concrete beam (RC보의 피로성능에 관한 실험적연구)

  • Kim Soon-Chul;Kim Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.848-853
    • /
    • 2004
  • This is a basic experimental study elaborated on reinforced concrete beam under load, especially crack behavior, bending stiffness, deflection and strain of concrete and reinforced bar for reinforced concrete and steel fiber reinforced concrete beam in relation to fatigue loading in service ability limit states. Test parameters are concrete strength, volume. and type of steel fiber and fatigue loading in service ability limit states to be changed. In order to obtain the actual conditions of various working loads for the aforesaid reinforced concrete beam, minimum load is applied 10$\%$ of maximum design load and maximum load was applied 60$\%$, 80$\%$ and 100$\%$ respectively. Under the same condition, the test was implemented up to 1 million cycle and the result was thoroughly analyzed and reviewed.

  • PDF

Characteristics of a 10kVA three phase superconducting power transformer (3상 10kVA 고온초전도 변압기의 특성)

  • Lee, S.W.;Lee, H.J.;Cha, G.S.;Lee, J.K.;Ryu, K.W.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.24-26
    • /
    • 2001
  • The high temperature super-conductor transformer gains interests from the industries. This paper described construction and test results of a 10kVA HTS transformer. Three phase transformer with double pancake windings were constructed. BSCCO-2223 wire, silicon sheet steel core and FRP cryostats were used in that transformer After the test of basic properties of the 3 phase HTS transformer using no load test, short ciucuit test and full load test, continuous operation of 100 hours with pure resistive load has been carried out. Test proved over-load capability and reliability of the HTS transformer.

  • PDF

Fatigue Phenomenon of Mechanical Properties in Denim Fabrics for Slacks during Repeated Shear and Tensile Deformation (반복 전단.인장 변형에 따른 데님 직물의 피로도에 관한 연구)

  • Lee, Chang-Mi;Gwon, O-Gyeong;Park, Hui-Ung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.6
    • /
    • pp.975-982
    • /
    • 1996
  • This study was conducted to examine the fatigue phenomenon of mechanical properites in denim fabrics for slacks during repeated shear and tensile deformation by analysing the change in the basic dynamic properties of fabrics on the basic of experiments to obtain the basic data necessary to measure their fatigue. In addition, this study was carried out by allowing these denim fabrics at market to go through the repeated deformation under such different loads as 500 gf/cm2 and 1000 gf/cm2 by using a simulated fatigue tester, by calculating both dynamic properties and hand value (HV) of these fabrics with KES-F system and then by obtaining the THV through these calculated properties. The results are as follows: 1 The fatigue phenomenon of dynamic properties was remarkably shown by the repeated shear and tensile deformation, while the increase of hysterical plastic substances was also remarkable in these shearing and bending properties. 2. The elasticity values of tensile, bending and compression properties, such as, B and G were reduced: whereas RT and RC values increased. It was shown, then, that those fabrics lost their elasticity and became flexible and soft with the increase of fatigue. 3. The fatigue phenomenon of hand value also showed that those fabrics became soft in relation with the change of all dynamic properties, and that their performance was also change to flexible hand value. 4. TRhe degree of fatigue was also shown by the loads given to the repeated deformation. It was shown that the fatigue was higher for the tensile load of 1000 gf/cm3 than did the standard load of 500 gf/cm3 It is necessary, therefore, to consider the load in accordance with their usage when examining the fatigue phenomenon with respect to the dynamic properties of clothing materials. 5. The loads were nearly not influenced by the change in the general hand value tended to show a little of increase with the increase of fatigue, Based on those results, it seems that the fatigue phenomonon is related to the loads given to the repeated deformation.

  • PDF

A hybrid seismic response control to improve performance of a two-span bridge

  • Heo, Gwanghee;Kim, Chunggil;Jeon, Seunggon;Lee, Chinok;Jeon, Joonryong
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.675-684
    • /
    • 2017
  • In this paper, a hybrid seismic response control (HSRC) system was developed to control bridge behavior caused by the seismic load. It was aimed at optimum vibration control, composed of a rubber bearing of passive type and MR-damper of semi-active type. Its mathematical modeling was driven and applied to a bridge model so as to prove its validity. The bridge model was built for the experiment, a two-span bridge of 8.3 meters in length with the HSRC system put up on it. Then, inflicting the EI Centro seismic load on it, shaking table tests were carried out to confirm the system's validity. The experiments were conducted under the basic structure state (without an MR-damper applied) first, and then under the state with an MR-damper applied. It was also done under the basic structure state with a reinforced rubber bearing applied, then the passive on/off state of the HSRC system, and finally the semi-active state where the control algorithm was applied to the system. From the experiments, it was observed that pounding rather increased when the MR-damper alone was applied, and also that the application of the HSRC system effectively prevented it from occurring. That is, the experiments showed that the system successfully mitigated structural behavior by 70% against the basic structure state, and, further, when control algorithm is applied for the operation of the MR-damper, relative displacement was found to be effectively mitigated by 80%. As a result, the HSRC system was proven to be effective in mitigating responses of the two-span bridge under seismic load.

Evaluation of Wind load Safety for Single G-type Greenhouse Using Korean Design Standard (건축구조기준을 활용한 농가지도형 G형 비닐하우스의 풍하중 안전성 평가)

  • Lee, Woogeun;Shin, Kyungjae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Plastic greenhouses are simple structures consisting of lightweight materials such as steel pipes and polyvinyl chloride. However, serious damage occurs due to heavy winds and typhoon every year. To prevent a collapse of structural members, the Ministry of Agriculture and Rural Development has distributed plans and specifications for disaster-resistant standards. Despite these efforts, more than 50% of greenhouses still do not satisfy the disaster-resistant standards. Among the greenhouses that do not meet these standards, 85% are single-span greenhouses proposed 20 years ago. Consequently, there is a need to evaluate the safety of wind loads for the single-span greenhouse. Unfortunately, there are no design specifications for the greenhouses under wind loads. Therefore, a Korean design standard (KDS) has been utilized. KDS is defined with reference to wind speeds occurring once every 500 years, raising concerns about potential overdesign when considering the durability of plastic greenhouses. To address this, the modified wind load, considering the durability of the plastic greenhouse, was calculated, and a safety evaluation was conducted for sigle G-type plastic greenhouse. It was observed that the moment acting on the windward surface was substantial, and there was a risk of the foundation being pulled out if the basic wind speed exceeded 32 m/s. In terms of the combination strength ratio, it was less than 1.0 only on the leeward side when the basic wind speed was 24 m/s and 26 m/s. However, in all other cases, it exceeded 1.0, indicating an unsafe condition and highlighting the necessity for reinforcement.

QUADRATURE ERROR OF THE LOAD VECTOR IN THE FINITE ELEMENT METHOD

  • Kim, Chang-Geun
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.735-748
    • /
    • 1998
  • We analyze the error in the p version of the of the finite element method when the effect of the quadrature error is taken in the load vector. We briefly study some results on the $H^{1}$ norm error and present some new results for the error in the $L^{2}$ norm. We inves-tigate the quadrature error due to the numerical integration of the right hand side We present theoretical and computational examples showing the sharpness of our results.

An Experimental Study on Eccentrically Loaded Steel Fiber Reinforced Concrete Columns (편심축하중을 받는 강섬유보강 콘크리트 기둥의 실험적 연구)

  • 박홍용;안영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.857-860
    • /
    • 2000
  • An experimental study on the behavior of Steel Fiber Reinforced Concrete Columns under eccentric compression are presented. Forth-one columns were tested; the variables were column type, eccentricity of load, fiber contents, and longitudinal reinforcement ratio. The column size was $250\times160$ mm in cross section with an effective length of 1150 mm. Eccentricity of load was varied in the range from 1/6 to 1/2 times the column depth. This paper is to provides a framework for basic understanding of the steel fiber concrete columns.