• Title/Summary/Keyword: baseline properties

Search Result 123, Processing Time 0.025 seconds

Experimental and finite element studies of special-shape arch bridge for self-balance

  • Lu, Pengzhen;Zhao, Renda;Zhang, Junping
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.37-52
    • /
    • 2010
  • Special-shape arch bridge for self-balance (SBSSAB) in Zhongshan City is a kind of new fashioned spatial combined arch bridge composed of inclined steel arch ribs, curved steel box girder and inclined suspenders, and the mechanical behavior of the SBSSAB is particularly complicated. The SBSSAB is aesthetic in appearance, and design of the SBSSAB is artful and particular. In order to roundly investigate the mechanical behavior of the SBSSAB, 3-D finite element models for spatial member and shell were established to analyze the mechanical properties of the SBSSAB using ANSYS. Finite element analyses were conducted under several main loading cases, moreover deformation and strain values for control section of the SBSSAB under several main loading cases were proposed. To ensure the safety and rationality for optimal design of the SBSSAB and also to verify the reliability of its design and calculation theories, the 1/10 scale model tests were carried out. The measured results include the load checking calculation, lane loading and crowd load, and dead load. A good agreement is achieved between the experimental and analytical results. Both experimental and analytical results have shown that the SBSSAB is in the elastic state under the planned test loads, which indicates that the SBSSAB has an adequate load-capacity. The calibrated finite-element model that reflects the as-built conditions can be used as a baseline for health monitoring and future maintenance of the SBSSAB.

Comparison of Morphine and Tramadol in Transforaminal Epidural Injections for Lumbar Radicular Pain

  • Park, Chan Hong
    • The Korean Journal of Pain
    • /
    • v.26 no.3
    • /
    • pp.265-269
    • /
    • 2013
  • Background: Transforaminal epidural steroid injections are known to reduce inflammation by inhibiting synthesis of various proinflammatory mediators and have been used increasingly. The anti-inflammatory properties of opioids are not as fully understood but apparently involve antagonism sensory neuron excitability and pro-inflammatory neuropeptide release. To date, no studies have addressed the efficacy of transforaminal epidural morphine in patients with radicular pain, and none have directly compared morphine with a tramadol for this indication. The aim of this study was to compare morphine and tramadol analgesia when administered via epidural injection to patients with lumbar radicular pain. Methods: A total of 59 patients were randomly allocated to 1 of 2 treatment groups and followed for 3 months after procedure. Each patient was subjected to C-arm guided transforaminal epidural injection (TFEI) of an affected nerve root. As assigned, patients received either morphine sulfate (2.5 mg/2.5 ml) or tramadol (25 mg/0.5 ml) in combination with 0.2% ropivacaine (1 ml). Using numeric rating scale was subsequently rates at 2 weeks and 3 months following injection for comparison with baseline. Results: Both groups had significantly lower mean pain scores at 2 weeks and at 3 months after treatment, but outcomes did not differ significantly between groups. Conclusions: TFEI of an opioid plus local anesthetic proved effective in treating radicular pain. Although morphine surpassed tramadol in pain relief scores, the difference was not statistically significant.

Earned Value Management Application Issues and Consideration for Weapon System Development Project (무기체계 연구개발 사업에서의 사업성과관리 적용 이슈 및 고려사항)

  • Kuk, Seung Hak;Kim, Yun Hee;Kim, Yongsin;Ju, You Yi
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • It is generally recommended to use EVM as an efficient means for measuring project performance and progress so that the EVMS user could manage his project successfully. In spite of it's favorable intention, most project participants think it as a heavy load or a sub practiced job with low responsibility. Especially in a weapon system R&D project, the manager should consider a possibility to change plans in the middle of the project because of uncertainty coming from properties of the R&D project. Even though there are lots of variables triggering unpredictable troubles in EVM application, EVM still could be a valuable project health indicator. In this paper we introduce a case study of EVM application for weapon system development project. Furthermore, we suggest several solutions for the issues occurring in utilizing EVM.

Cascaded Propagation and Reduction Techniques for Fault Binary Decision Diagram in Single-event Transient Analysis

  • Park, Jong Kang;Kim, Myoungha;Kim, Jong Tae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 2017
  • Single Event Transient has a critical impact on highly integrated logic circuits which are currently common in various commercial and consumer electronic devices. Reliability against the soft and intermittent faults will become a key metric to evaluate such complex system on chip designs. Our previous work analyzing soft errors was focused on parallelizing and optimizing error propagation procedures for individual transient faults on logic and sequential cells. In this paper, we present a new propagation technique where a fault binary decision diagram (BDD) continues to merge every new fault generated from the subsequent logic gate traversal. BDD-based transient fault analysis has been known to provide the most accurate results that consider both electrical and logical properties for the given design. However, it suffers from a limitation in storing and handling BDDs that can be increased in size and operations by the exponential order. On the other hand, the proposed method requires only a visit to each logic gate traversal and unnecessary BDDs can be removed or reduced. This results in an approximately 20-200 fold speed increase while the existing parallelized procedure is only 3-4 times faster than the baseline algorithm.

Identification of High Frequency Peakers with long-term monitoring observation at 22 and 43 GHz

  • Jeong, Yongjin;Sohn, Bong Won;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2014
  • High Frequency Peakers (HFPs) are radio-loud Active Galactic Nuclei (AGN), which are regarded as being in the earliest evolutionary phase (102-103 years) of radio galaxies. They are expected to be small in size (< ~1 kpc) compared to their host galaxies (~a few 10s kpc), and have convex spectra, which are peaking at high radio frequency (> 5 GHz). Their size and spectral shape are the most obvious supporting evidence of extremely young ages. HFPs are therefore ideal targets to probe the earliest stage of radio sources. To date however, the young radio source classification has been relying mainly on the spectral shape which usually does not cover high enough frequencies where the true peak flux is located. Hence HFPs are often confused with blazars which may show a similar spectral shape and apparent compactness but are a somewhat evolved form of AGNs. Therefore, we have been challenging to identify HFPs among the sample of 19 candidates using the Korean VLBI Network (KVN) which enables us to extend the radio spectrum baseline up to 22 and 43 GHz. These are higher than the frequencies used in most previous studies of HFPs, allowing us to select genuine HFPs. By long-term monitoring of 18 epochs, we have also inspected the variability of the sample to select out blazars which are highly variable yet with a similar radio spectrum. In this work, we present the light curves and spectral properties of the HFP candidates. We discuss the results of our re-identification of HFPs.

  • PDF

Cosmological parameter constraints from galaxy-galaxy lensing with the Deep Lens Survey

  • Yoon, Mijin;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.54.3-55
    • /
    • 2017
  • The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 deg2 survey carried out with NOAO's Blanco and Mayalltelescopes. DLS is unique in its depth reaching down to ~27th mags in BVRz bands. This enables a broad redshift baseline and is optimal for investigating cosmological evolution of the large scale structure. Galaxy-galaxylensing is a powerful tool to estimate averaged matter distribution around lensgalaxies by measuring shape distortions of background galaxies. The signal from galaxy-galaxy lensing is sensitive not only to galaxy halo properties, but also to cosmological environment at large scales. In this study, we measure galaxy-galaxy lensing and galaxy clustering, which together put strong constraints on the cosmological parameters. We obtain significant galaxy-galaxy lensing signals out to ~20 Mpc while tightly controlling systematics. The B-mode signals are consistent with zero. Our lens-source flip test indicates that minimal systematic errors are present in DLS photometric redshifts. Shear calibration is performed using high-fidelity galaxy image simulations. We demonstrate that the overall shape of the galaxy-galaxy lensing signal is well described by the halo model comprised of central and non-central halo contributions. Finally, we present our preliminary constraints on the matter density and the normalization parameters.

  • PDF

Aerodynamic Characteristics and Shape Optimization of Airfoils in WIG Craft Considered Ground Effect (지면효과를 고려한 WIG 선 익형의 공력특성 및 형상최적화)

  • Lee, Ju-Hee;Kim, Byeong-Sam;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1084-1092
    • /
    • 2006
  • Shape optimization of airfoil in WIG craft has been performed by considering the ground effect. The WIG craft should satisfy various aerodynamic characteristics such as lift, lift to drag ratio, and static height stability. However, they show a strong trade-off phenomenon so that it is difficult to satisfy aerodynamic properties simultaneously. Optimization is carried out through the multi-objective genetic algorithm. A multi-objective optimization means that each objective is considered separately instead of weighting. Due to the trade-off, pareto sets and non-dominated solutions can be obtained instead of the unique solution. NACA0015 airfoil is considered as a baseline model, shapes of airfoil are parameterized and rebuilt with four-Bezier curves. There are eighteen design variables and three objective functions. The range of design variables and their resolutions are two primary keys for the successful optimization. By two preliminary optimizations, the variation can be reduced effectively. After thirty evolutions, the non-dominated pareto individuals of twenty seven are obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space.

A Study on Performance Characteristics of Propane/Isobutane Refrigerant Mixtures in a Domestic Small Multi-Refrigeration System (프로판/이소부탄(R-290/R-600a) 혼합 냉매를 적용한 가정용 소형 멀티 냉동시스템의 성능특성에 관한 연구)

  • Kim Sanguk;Lee MooYeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.271-278
    • /
    • 2005
  • In this paper, the performance of Kim-chi refrigerator with three evaporator and one compressor was investigated in employing $55\%$ propane and $45\%$ isobutane (R290/R600a) refrigerant mixture as an alternative refrigerant of R134a. The drop-in test was performed by varying both refrigerant charge and capillary tube length in order to find both the performance and reliability of a small multi-refrigeration system. Results show that the power consumption is decreased by about $15\%$ and COP is increased by about $10\%$, respectively as compared to the baseline system using R-134a. In addition, the propane/isobutane refrigerant mixture system took advantage of the minimization of modification and redesigning of system components because thermodynamic properties such as saturation pressure, temperature, normal boiling point(NBP) characteristics are similar to those of R134a. The reduction of sales cost is caused by the decrease of refrigerant cost per unit mass and refrigerant charge amount necessary for the refrigeration system.

Structural health monitoring of the Jiangyin Bridge: system upgrade and data analysis

  • Zhou, H.F.;Ni, Y.Q.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.637-662
    • /
    • 2013
  • The Jiangyin Bridge is a suspension bridge with a main span of 1385 m over the Yangtze River in Jiangsu Province, China. Being the first bridge with a main span exceeding 1 km in Chinese mainland, it had been instrumented with a structural health monitoring (SHM) system when completed in 1999. After operation for several years, it was found with malfunction in sensors and data acquisition units, and insufficient sensors to provide necessary information for structural health evaluation. This study reports the SHM system upgrade project on the Jiangyin Bridge. Although implementations of SHM system have been reported worldwide, few studies are available on the upgrade of SHM system so far. Recognizing this, the upgrade of original SHM system for the bridge is first discussed in detail. Especially, lessons learned from the original SHM system are applied to the design of upgraded SHM system right away. Then, performance assessment of the bridge, including: (i) characterization of temperature profiles and effects; (ii) recognition of wind characteristics and effects; and (iii) identification of modal properties, is carried out by making use of the long-term monitoring data obtained from the upgraded SHM system. Emphasis is placed on the verification of design assumptions and prediction of bridge behavior or extreme responses. The results may provide the baseline for structural health evaluation.

THE STUDY OF SCATTERING IN THE ISM WITH HIGH RESOLUTION OBSERVATIONS OF OH MASERS

  • Migenes, Victor;Slysh, V.I.;Velasco, A.E.Ruis;Villalpando, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.131-132
    • /
    • 2007
  • The research of OH maser emission sources with high angular resolution is complicated by the effects of interstellar scattering: more over, most of the OH maser sources are located in the galactic plane where the scattering is largest. However, the data available from pulsar studies on the spatial distribution of the amount of scattering indicate that there is a strong non-uniformity in the distribution of the amount of scattering material. There are directions in the galactic plane where the scattering is an order of magnitude higher than the average, as well as directions where the scattering is much lower. The latter provide an opportunity to investigate OH masers with the full angular resolution offered by very long baseline interferometry instruments, like the VLBA, and measure their true angular size, shape and brightness temperature. We have observed approximately 100 OH maser sources, distributed all over the northern hemisphere, with the VLBA in order to study the scattering properties of the interstellar medium.