• Title/Summary/Keyword: base-metal

Search Result 1,596, Processing Time 0.028 seconds

Effect of adhesive primers on bonding strength of heat cure denture base resin to cast titanium and cobalt-chromium alloy

  • Kim, Su-Sung;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • STATEMENT OF PROBLEM. The poor chemical bonding of a denture base resin to cast titanium framework often introduces adhesive failure and increases microleakage. PURPOSE. This study evaluated the shear bond strengths of a heat cure denture base resin to commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy using two adhesive primers. MATERIAL AND MATHODS. Disks of commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy were cast. Specimens without the primer were also prepared and used as the controls. The shear bond strengths were measured on a screw-driven universal testing machine. RESULTS. The primers significantly(P < .05) improved the shear bond strengths of the heat cure resin to all metals. However, the specimens primed with the Alloy $primer^{(R)}$(MDP monomer) showed higher bond strength than those primed with the MR $bond^{(R)}$(MAC-10 monomer) on titanium. Only adhesive failure was observed at the metal-resin interface in the non-primed specimens, while the primed specimens showed mixed failure of adhesive and cohesive failure. CONCLUSIONS. The use of appropriate adhesive metal primers makes it possible not only to eliminate the need for surface preparation of the metal framework before applying the heat cure resins, but also reduce the need for retentive devices on the metal substructure. In particular, the Alloy $primer^{(R)}$, which contains the phosphoric acid monomer, MDP, might be clinically more acceptable for bonding a heat cure resin to titanium than a MR $bond^{(R)}$, which contains the carboxylic acid monomer, MAC-10.

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Characteristics Evaluation on Welding Metal Zones Welded with Inconel 625 Filler Metal to Cast Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.542-547
    • /
    • 2015
  • Since the oil price has been significantly jumped for several years, a heavy oil of low quality has been mainly used in the diesel engine of the merchant ship. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, Inconel 625 filler metal were welded with GTAW method in the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. Furthermore, the corrosion current density of the weld metal zone revealed the lowest value, having the highest value of hardness. The corrosive products with red color and local corrosion like as a pitting corrosion were considerably observed at the base metal zone, while these morphologies were not wholly observed in the weld metal zone. In particular, the polarization characteristics such as impedance, polarization curve and cyclic voltammogran associated with corrosion resistance property were well in good agreement with each other. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the Inconel 625 electrode.

Analysis on Improving Power of Thermal Radiation Shield in Low Pressure Chamber of AMTEC (AMTEC내 저압용기에서의 열복사차단막 형상에 따른 발전량 향상 해석)

  • Chung, Won-Sik;Chi, Ri-Guang;Lee, Wook-Hyun;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.54-62
    • /
    • 2016
  • The most efficient system for converting heat to electricity, AMTEC (Alkali Metal Thermal-to-Electric Convertor), is a device that directly converts heat energy to electricity using an alkali metal (sodium) as the working fluid. The AMTEC consists of a low pressure chamber, high pressure chamber, BASE (Beta-Alumina Solid Electrolyte), and artery wick. The main heat loss of the AMTEC system occurs in the low pressure chamber. A high power generation rate is thought to be obtainable by using a high temperature in the BASE. Therefore, to reduce the radiation heat loss, 6 types of radiation shields were examined to reduce the radiative heat loss in the low pressure chamber. The power generation rate of the AMTEC varied depending on the shape of the radiation shield. CFD (Computational Fluid Dynamics) analyses were carried out to optimize the shape of the radiation shield. As a result, the optimum radiation shield was found to consist of a curvature formed at the vertical point, in which case the dimensionless temperature (condenser temperature/BASE temperature) is approximately 0.665 and the maximum power generated is calculated to be 17.69W. Increasing the distance beween the BASE and condenser leads to an increase in the power generated, and the power generated with the longest distance was 17.58 W. The shields with multiple holes and multiple horizontal layers showed power reduction rates of 0.91 W and 2.06 W, respectively.

A Study on the Quantification of Market-Government Response for Import Interruption Risk of Base Metal in Korea (베이스메탈 수입중단에 대한 민관 대응 리스크 물량 산정 연구)

  • Kim, Yujeong
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.3-9
    • /
    • 2021
  • In Korea, base metals such as lead, zinc, copper, tin, nickel, and aluminum have a polarized supply and demand structure. Despite the presence of world-class producers of lead, zinc, and copper, and their production is insufficient. And there are no domestic producers of tin, nickel, and aluminum, Thus, most of the domestic demand is dependent on imports. Therefore, it is necessary to prepare for the risk of supply interruption, such as the disruption of the import of base metals or interruption of domestic production. In this study, we estimated the quantity required to respond to the risk of import disruption, the quantity to which the market can respond, and the quantity to which the government needs to respond for six base metals (copper, lead, zinc, aluminum, nickel, and tin).

Electrochemical corrosion study on base metals used in nuclear power plants in the HyBRID process for chemical decontamination

  • Kim, Sung-Wook;Park, Sang-Yoon;Roh, Chang-Hyun;Shim, Ji-Hyung;Kim, Sun-Byeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2329-2333
    • /
    • 2022
  • Base metal corrosion forms a significant issue during the chemical decontamination of the primary coolant loop in nuclear power plants as it is directly related to the economic and safety viability of decommissioning. In this technical note, potentiodynamic evaluations of several base metals (304 stainless steel, SA106 Grade B carbon steel, and alloy 600) were performed to determine their corrosion behavior during the hydrazine (N2H4)-based reductive ion decontamination (HyBRID) process. The results suggested that N2H4 protected the surface of the base metals in the HyBRID solution, which is primarily composed of H2SO4. The corrosion resistance of the carbon steel was further improved through the addition of CuSO4 to the solution. The corrosion rate of carbon steel in the H2SO4-N2H4-CuSO4 solution was lower than that exhibited in an oxalic acid solution, a commonly used reaction medium during commercial decontamination processes. These results indicate the superiority of the HyBRID process with respect to the base metal stability.

Corrosion of the non-beryllium dental casting Ni-Cr alloys for the denture base framework metal and the porcelain-fused-to-metal crown (베릴륨 불포함 치과 주조용 니켈-크롬 합금 중 금속의치상용 합금과 금속소부도재관용 합금의 부식에 관한연구)

  • Kim, Hong-Sik;Song, Jae-Sang;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.337-344
    • /
    • 2012
  • Purpose: This study examined the corrosion level by alloy type and pH, and used the corrosion levels as the dental health data. The study utilized one Ni-Cr alloy for the full and removable partial denture metal frameworks and two Ni-Cr alloys for porcelain-fused-to-metal crown, among the non-beryllium dental casting non-precious Ni-Cr alloys. Methods: The alloy specimens were manufactured in $10cm^2$ and stored in the corrosive solution(pH 2.2-4.4) in the electrical water bath($37^{\circ}C$) for seven days. Afterwards, the metal ions were quantitatively analyzed using the ICP. Results: Of the three metal alloys, Bellabond-Plus$^{(R)}$alloy and SOLIBOND N$^{(R)}$alloy, with 22% or higher chrome chemical contents, had higher corrosion resistance than Jdium-100$^{(R)}$alloy with 20% chrome chemical content. In all three alloys, the corrosion of Ni was highest, and metal ion corrosion was higher in the pH 2.2 corrosive solution. Conclusion: Although Ni-Cr alloy was not very corrosive, a Ni-allergic patient should not have Ni-Cr alloy prosthesis. The Ni-Cr alloy for porcelain-fused-to-metal crown should be designed for the dental porcelain to cover the whole crown.

Formation of Ti and Ti ceramics composite layer on aluminium alloy (Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화)

  • ;;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF

Effect of Crack Orientation on Spatial Randomness of Fatigue Crack Growth Rate in FSWed 7075-T651 Aluminum Alloy Joints (마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 변동성에 미치는 균열 방향의 영향)

  • Jeong, Yeui-Han;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • In this investigation, the effect of crack orientation on spatial randomness of fatigue crack growth rate (FCGR) in friction stir welded (FSWed) 7075-T651 aluminum alloy joints has been statistically analyzed by Weibull distribution. The fatigue crack growth tests are conducted under three different constant stress intensity factor range (SIFR) control at room temperature with R = 0.1 and frequency 10Hz on compact tension (CT) specimen machined at base metal (BM) and weld metal (WM). The experimental fatigue crack growth rate data were obtained for two types of specimens having LT and TL orientations. LT specimens both base metal and weld metal showed higher fatigue crack growth rate as compared to TL specimens. In the lower SIFR region, FCGR were found to be almost 3 times higher in higher SIFR region. The shape parameter of Weibull both LT and TL orientation for FCGR was increased with increasing SIFR, the scale parameter was also increased with increasing SIFR. The smallest value of the shape parameter was shown in weld metal specimens having LT orientation at lower SIFR region.