• Title/Summary/Keyword: base shear load

Search Result 129, Processing Time 0.024 seconds

Effects of the buried lamellar tears on the mechanical strength in the welded T joints (T형상용접 이음에서 매몰된 라멜라균열이 용접부의 기계적 강도에 미치는 영향)

  • 고진현
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.44-53
    • /
    • 1988
  • The mechanical strengths of buried lamellar tears located near the weld toe in the welded tee joints were evaluated in terms of the loss of load carrying capacity as a function of tear area. In static loading, the load carrying capacity was significantly reduced when tear intercepted over 10% of the cross-sectional area of the welded joints. However, the welded joints containing buried tears still failed at stresses over the yield strength of the base metal in the through-thickness direction in spite of the presence of tears up to 20-25% of the area. Fatigue strength of welded joints containing tears markedly reduced with increasing tear areas. Lehigh lamellar tearing test used in this study to produce speicmens was described in detail. The load carrying cpapacity in static loading was influenced by the reduction of supporting area whereas that in fatigue loading was influenced by the stress-concentration effects of lamellar tears and the reduction of supporting area. In bend tests, the pre-existing lamellar tears always grew up toward the weld toe. However, in fatigue loading, cracks grew up and down simultaneously form both the weld toe and the top of lamellar tears because of stress concentration. In fatigue loading, delaminations and decohesion of inclusion/matrix interface generated in multipass welds provided crack propagation paths and enhanced crack propagation because the tips of delaminations and deconhesios acted as stress raisers.

  • PDF

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

Modeling of Damage Initiation in Singly Oriented Ply Fiber-Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링)

  • 남현욱;변현중;정성욱;한경섭
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2001
  • Modeling of damage initiation in singly oriented ply (SOP) Fiber Metal Laminate (FML) under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for th\ulcorner modeling of damage initiation in SOP FML. The failure indices (FI) of the fiber prepreg and the metal laminate were calculated by using the Tasi-Hill failure criterion and the Miser yield criterion, respectively. To verify the present method, the failure analysis was conducted under uniaxial loading and cylindrical bending, then the analysis under concentrated load was conducted. The results show that the analysis is reasonable. An indentation test was conducted to compare a damage initiation load with a calculated FI. The test was conducted under two side clamped conditions to study the fiber orientation effect. Indentation curve was fitted using the Hertz equation and a damage initiation load is defined that the point which deviate the fitted curve from the real indentation curve. The damage initiation loads were obtained under various fiber orientations and compared with calculated FIs. The experiment was well matched with calculated FI. This results shows that the present method is suitable for the damage initiation modeling of SOP FML.

  • PDF

Seismic Performance Evaluation of Staggered Truss System by the Shape of Truss (트러스 형태에 따른 스태거드트러스 골조시스템의 내진성능 평가)

  • Hong, Yoon-Soo;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.397-404
    • /
    • 2017
  • The purpose of this study is to evaluate the seismic performance of Staggered Truss Frame(STF) system while changing a shape of truss. The model of this project is a office building of ten floors with Pratt, Howe, Warren, K and Vierendeel truss system applied on each model. Next step is to select the section of elements which satisfy the highest demand capacity ratio by structure design considering gravity load, earthquake load and wind load and then calculate natural period, base shear and story drifts. On the basis of these values, Capacity Spectrum Method(CSM) shows the plastic behavior of STF system such as performance point of Design Earthquake(DE) and Maximum Considered Earthquake(MCE), yield state, plastic hinge etc. to be compared with other truss systems. As a result, Vierendeel STF system especially was found to have the highest strength and stiffness to the corresponding earthquake and all the models for each truss shape fulfilled the target performance level.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

A STUDY ON THE BOND STRENGTHS BETWEEN GLASS IONOMER CEMENT BASES AND COMPOSITE RESINS (글래스 아이오노머 이장재와 복합레진간의 결합강도에 관한 연구)

  • Kim, Min-Hee;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.520-527
    • /
    • 1999
  • For the purpose of providing some suggestions in selection of filling materials used in 'sandwich technique', the bond strengths between glass ionomer cement bases and composite resins were investigated and compared. For lining materials, 'Vitrebond' and 'Ketac-fil' were used. Using these two as bases, 10 of each following resins were built up on the top ; Z-100 (light curing resin) Clear-fil (chemical curing resin), Bis-core (dual cure resin), Dyract (compomer), therfore 10 specimens of each group and total of 80 specimens were made. After storing specimens in $37^{\circ}C$ deionized water for 24 hours, the shear bond strengths were measured under universal testing machine with 50 kg of full load scale and 1mm/min of cross-head speed and obtained the results as follows : 1. Over Vitrebond base, Z-100 showed the lowest bond strength but the other three did not show any difference in bond strength. 2. Over Ketac-fil base, Clear-fil showed the highest bond strength followed by Dyract, Bis-core, and Z-100 showed the lowest bond strengths. 3. Whereas Clear-fil showed the similar bond strengths on the Vitrebond base as other resins, it showed the highest bond strength on Ketac-fil base, which showed some difference in bond strength by differing GIC bases. 4. The bond strengths between base materials and composite resin showed a stronger resin-dependence tendency in cases with Ketac-fil bases rather than with Vitrebond bases.

  • PDF

Seismic Loading Requirements for Singapore Buildings

  • Pan, Tso-Chien
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.87-98
    • /
    • 1998
  • In this paper, the potential ground motion in terms of the peak ground accelerations(PGAs) due to long-distance Sumatra earthquakes is investigated for Singapore, following the probabilistic seismic hazard assessment a, pp.oach. The case investigated differs from a conventional one, in that few attenuation equations for long-distance major earthquakes are readily available. The attenuation relationships developed for other regions of the world are thus reviewed. It is found that the existing attenuation equations, when extrapolated to distant major earthquakes, tend to underestimate the PGAs. By comparing with the PGAs recorded over long distances at stations of the Japanese Meteorological Agency for major earthquakes in Japan, an attenuation equation is chosen for this study. With the chosen attenuation equation, the probability of PGAs exceeding selected levels for various exposure periods of time is then computed. The results show that at Singapore there is a 10% probability in 50 years for the PGA at rock sites to exceed 1.1% g. In view of the results and the associated uncertainties, a base shear coefficient of 1.5% is being recommended as the tentative seismic loading in Singapore. The tentative seismic loading reflects the design value of the notional horizontal load, equal to 1.5% of the characteristic building weigh as specified in the BS code, which usualy governs the design of most buildings in Singapors.

  • PDF

Direct displacement based design of hybrid passive resistive truss girder frames

  • Shaghaghian, Amir Hamzeh;Dehkordi, Morteza Raissi;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.691-708
    • /
    • 2018
  • An innovative Hybrid Passive Resistive configuration for Truss Girder Frames (HPR-TGFs) is introduced in the present study. The proposed system is principally consisting of Fluid Viscous Dampers (FVDs) and Buckling Restrained Braces (BRBs) as its seismic resistive components. Concurrent utilization of these devices will develop an efficient energy dissipating mechanism which is able to mitigate lateral displacements as well as the base shear, simultaneously. However, under certain circumstances which the presence of FVDs might not be essential, the proposed configuration has the potential to incorporate double BRBs in order to achieve the redundancy of alternative load bearing paths. This study is extending the modern Direct Displacement Based Design (DDBD) procedure as the design methodology for HPR-TGF systems. Based on a series of nonlinear time history analysis, it is demonstrated that the design outcomes are almost identical to the pre-assumed design criteria. This implies that the ultimate characteristics of HPR-TGFs such as lateral stiffness and inter-story drifts are well-proportioned through the proposed design procedure.

Vibration Control of a Building Structure with a Tuned Liquid Damper Using Real-Time Hybrid Experimental Method (실시간 하이브리드 실험법을 이용한 동조액체댐퍼가 설치된 건물의 진동제어)

  • Lee Sung-Kyung;Lee Sang-Hyun;Min Kyung-Won;park Eun-Churn;Woo Sung-Sik;Chung Lan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.256-263
    • /
    • 2006
  • In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF