• Title/Summary/Keyword: base pressure

Search Result 1,052, Processing Time 0.023 seconds

Effective Method for Remodeling of Deteriorated Agricultural Reservoirs (노후화된 농업용 저수지의 효율적인 리모델링 방법)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.43-52
    • /
    • 2017
  • This study analyzed pore water pressure, earth pressure and settlement through laboratory model tests in order to suggest the effective remodeling method in the case of reinforcing the upstream and downstream slope of deteriorated reservoirs that has no cores and filters or is not functional. The method of remodeling the upstream slope using dredge soil is first prevent seepage by installing the core, and the leakage water can be rapidly discharged through a filter installed on the downstream slope. Therefore, it is considered a highly efficient method of remodeling that reduces piping phenomena and increasing the storage capacity of the reservoir. The variation of earth pressure without the core and filter was greater than with it, while the change largely showed in the upstream slope, the downstream slope did not show any significant changes. The remodeling method of the downstream slope with the core appeared differently pore water pressure depending on the presence of the vertical and horizontal filters. In the upstream slope, the pore water pressure rises sharply, the base and middle gradually increased, and the downstream slope appeared small. The pore water pressure of embankment with a vertical and horizontal filter will be smaller than without it. The remodeling of deteriorated reservoir that does not have the function of the filter, the vertical filter must be installed in a position that is higher than the expected seepage line by removing portions of the downstream slopes. Since the horizontal filter is an important structure that provides stable drainage during an earthquake or concentrated leak, it is necessary to examine any change in the seepage characteristics depending on the filter intervals via three-dimensional finite element analysis, and it should be connected to the tow-drain to reduce the possibility of the collapse of the reservoir.

Low Pressure Test Results of Regenerative Cooling Combustion Chamber for 30tonf-Class Liquid Rocket Engine (30톤급 액체로켓엔진 재생냉각 연소기 저압 연소시험 결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.71-75
    • /
    • 2009
  • Test results of combustion chamber to verify the operation and the combustion performance at low pressure, design and off-design conditions for 30ton-class liquid rocket engine were described. The combustion chamber has nominal chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. Effects of chamber pressure on combustion characteristic velocity are largely affected by mixture ratio. The specific impulse of combustion chamber is proportional to the chamber pressure regardless of the mixture ratios. The present results can be used as the base to predict the combustion performance of large sized chamber at high pressure while demonstrating the possibility of low pressure firing test of large sized chamber.

  • PDF

Variation of Dynamic Earth Pressure Due to Sliding of Retaining Walls (옹벽의 활동에 따른 배면 동적토압의 변화)

  • Yoon Suk-Jae;Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.55-61
    • /
    • 2005
  • Mononobe-Okabe method is generally used to evaluate dynamic earth pressure for the seismic design of retaining walls. However, Mononobe-Okabe method does not consider the effects of dynamic interactions between backfill soil and walls. In this research, shaking table tests on retaining walls were performed to analyze the phase and magnitude of dynamic earth pressure. The unit weight of walls, the amplitude of input acceleration and the base friction coefficient of walls were varied to analyze the influence of these factors on the dynamic earth pressure. Test results showed that the dynamic earth pressure was 180 degrees out of phase with the wall inertia force for the low sliding velocity of the wall, whereas small peaks of the dynamic earth pressure, which are in phase with the wall inertia force, were developed for the high sliding velocity of the wall. The amplitude of dynamic earth pressure was proportional to that of wall acceleration and the unit weight of the wall. In addition, the dynamic earth forces calculated by the Mononobe-Okabe method were the upper limit of the dynamic earth pressures.

Physicochemical properties of Sancho (Zanthoxylum schinifolium) seeds oil base extracts from different method (추출방법에 따른 산초 종자 정유성분의 이화학적 특성)

  • Jung, Mi Seun;Shin, Yeon Mi;Kim, Myeong Kyu;Kim, Chul Ho;Choi, Jine Shang
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.827-833
    • /
    • 2013
  • In this study we investigated physicochemical properties of Zanthoxylum schinifolium seeds oil base extracts. Supercritical fluid extraction (SFE), roast pressure (RPM) and steam pressure (SPM) method were used for oil base extracts. The pressure and temperature conditions of SFE method were $70{\sim}80kgf/cm^2$ and below $30^{\circ}C$, respectively, by newly designed SFE-$CO_2$ system. The yield of extraction was 38.5% at the SFE method and others were 30% in each. Refractive index of oil base extracts, there was also no difference between them as 1.470~1.473. At the SFE method, viscosity observed higher value better than two method that showed as 181.88~209.93 according to the extraction time. Three oil base extracts showed difference in color which was low in b value at SFE, especially. The result of acid value at RPM that was lower as 0.93 mg/g than 2.36~2.64 mg/g of SFE method. Saponification value ranged $182.96{\sim}196.57mg{\cdot}KOH/g$ in three extraction method. At SPM, TBA value showed as 158.96 mg/kg, but in the SFE method ranged higher value as 201.30~347.14 mg/kg. Fatty acids analysed with 18 varieties in all oil base extracts and the composition of saturated/unsaturated fatty acids was 17:83(v/v) at SEF. Especially, ${\omega}$-3,6,9 fatty acids observed at SFE and SPM, but did not appeared at RPM. Fatty acid of ${\omega}$-6,9 detected in all cases.

A Welding Characteristics of Large Caliber-Thick Plate Pressure Vessel Low Alloy Steel (Mn-Mo) (대구경-후판 압력용기용 저 합금강(Mn-Mo)의 용접특성)

  • Ahn, Jong-Seok;Park, Jin-Keun;Yoon, Jae-Yeon
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.10-14
    • /
    • 2012
  • Recently the low alloy steel plate made with manganese-molybdenum is used widely in steam drum and separator of the new coal-fired power plant boiler. This material is suitable for the vapor storage of high pressure and high temperature. The high temperature creep strength of Mn-Mo alloy is higher than the carbon plate(SA516) that used in the subcritical pressure boiler. It reduces the thickness of the pressure vessel and makes the lightweight possible. Recently in the power plant boiler operation and production process, the damage has happened frequently in the heat affected zone and base material according to the hydrogen crack and delayed crack. This paper describes the research result about the damage case experienced in the boiler steam drum production process and present the optimum manufacture method for the similar damage prevention of recurrence.

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Turbulence Models- (Ahmed Body 주위의 3차원 난류유동 해석 - 난류모델의 평가)

  • Myong, H.K.;Jin, E.;Park, H.K.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.873-881
    • /
    • 1997
  • A numerical simulation has been carried out for three-dimensional turbulent flows around an Ahmed body. The Reynolds-averaged Navier-Stokes equation is solved with the SIMPLE method in general curvilinear coordinates system. Several k-.epsilon. turbulence models with two convective difference schemes are evaluated for the performance such as drag coefficient, velocity and pressure fields. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted k-.epsilon. turbulence models as well as the finite difference schemes. The results of simulation prove that the RNG k-.epsilon. model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient. It is also demonstrated that the large difference between simulations and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from vertical rear end base.

Properties of Friction Welding of Dissimilar Metals WCu-Cu Weld for Electrical Contact Device (전기접점용 이종금속 WCu-Cu 접합재의 마찰압점 특성)

  • An, Yong-Ho;Yun, Gi-Gap;Min, Taek-Gi;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.239-245
    • /
    • 2000
  • A copper-tungsten sintered alloy(WCu) has been friction-welded to a tough pitch copper (Cu) in order to investigate friction weldability. The maximum tensile strength of the SWu-Cu friction welded joints had cp to 96% of those of the Cu base metal under the condition of friction time 0.6sec, friction pressure 45MPa, upset pressure 125MPa and upset time 5.0sec. And it is confirmed that the tensile strength of friction welded joints are influenced highly by upset pressure rather than friction time. And it is considered that mixed layer was formed in the Cu adjacent side to the weld interface, W particles included in mixed layer induced fracture in the Cu adjacent side to the weld interface and also, thickness of mixed layer was reduced as upset pressure increase.

  • PDF

Evaluation of Underclad Crack Susceptibility of the SA508 Class 3 Steel for Pressure Vessels -Optimization of Heat Input- (압력용기용 SA508 class3강에 대한 underclad 균열의 감수성 평가 - 입열량의 최적화)

  • 김석원;양성호;김준구;이영호
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.139-149
    • /
    • 1995
  • Many pressure vessels for the power plants are fabricated from low alloy ferritic steels. The inner sides of the pressure vessels are commonly weld_cladded with austenitic stainless steels to minimize problems of corrosive attack. The submerged-arc welding(SAW) process is now used in preference to other processes because of the possibilities open to automation to reduce the overaII welding times. The most reliable way to avoid underclad cracks(UCC) which are often detected at the overlap of the clad beads is to use nonsusceptible steels such as SA508 class 3. At present domestically developed forging steel of SA508 cl.S is now being cladded with single layer by using 90mm wide strip, which transfers higher heat input into the base metal compared to the conventional two layers strip cladding which has been in wide use with 30-60 mm wide strip. But the current indices for the influence of heat input on crack susceptibility are not accurate enough to express the subtle difference in crack susceptibility of the steel. Therefore, the purpose of this present study is: l) To determine UCC susceptibility on domestic forging steel, SA508 cl.S cladded with single layer by using submerged arc 90mm strip and, 2) To optimize heat input range by which the crack susceptibility could be eliminated.

  • PDF

Early Fuel Evaporator Effects on Cold Driveability of Automobile (조기연료 기화장치의 냉간 시동 및 주행 성능 분석)

  • 전흥신
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.178-185
    • /
    • 2002
  • The object of this paper is to investigate the effects of early fuel evaporators on cold driveability of gasoline passenger cars. Experiment has been carried out for the assessment cold start performance and cold driveability. And fuel consumption rate, emission and cylinder pressure were measured. On the base of combustion pressure of cylinder, rate of heat release, cumulative heat release amount and burned mass fraction are evaluated. The results show that fuel consumption rate is increased by 17.7%, monoxide and hydrocarbon were reduced by 23% and by 45% respectively, fluctuations of indicated mean effective pressure and maximum combustion pressure were increased by 4∼6%, fuel consumption rate per power was improved by 0.2∼2.3%. These are caused by the fact maximum heat release period and main combustion period are getting short.

Behavior Analysis of Earth Retaining Walls on the Excavation for Contact Structure (인접 구조물의 터파기로 인한 흙막이 벽체의 거동 분석)

  • Kim, Young-Muk;Jung, Young-Soo;Hong, Chang-Pyo;Shin, Youn-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1496-1503
    • /
    • 2005
  • The study on the lateral earth pressure is briskly preformed for various conditions such as type of retaining walls, ground condition, and type of supporting systems. It is not simple to determine the distribution of lateral earth pressure accurately, however, because the lateral earth pressure is affected by various factors. This study is performed to analyze the behavior of earth retaining walls for new excavation contacting with existing excavation by comparing with the site measuring values before and after new excavation. On the base of observation, the distribution of strut axial forces is similar to that of ganeral earth retaining walls, but strut axial forces is increased by removal of existing earth anchors. When new excavation is performed contacting with existing excavation, the axial force of strut is decreased because of soil exclusion in the behind walls, but that force is increased after new exeavation. The analysis result show that the installation of strut in middle part makes a effect to not only 1 adjacent strut, but 3-5 adjacent struts. Also during new excavation strut axial forces is decreased by relaxation of total earth retaining wall system.

  • PDF