• 제목/요약/키워드: base hydrolysis mechanism

검색결과 38건 처리시간 0.021초

2-Phenyl-4H,5H-3-methyl-3-thiazolinium Perchlorate 유도체의 가수분해 반응 메카니즘에 관한 반응속도론적 연구 (Kinetic Studies on the Mechanism of Hydrolysis of 2-Phenyl-4H,5H-3-methyl-3-thiazolinium Perchlorate Derivatives)

  • 김태린;이소영;한만소;변상용;이석희
    • 대한화학회지
    • /
    • 제44권2호
    • /
    • pp.120-126
    • /
    • 2000
  • 2-PhenyI-4H,5H-3-methyl-3-thiazolinium perchlorate(PTP)유도체들의 가수분해속도상수를 수용액에서 자외선 분광법으로 측정하여 넓은 pH 범위에서 적용될 수 있는 속도식을 구하였다. pH에 따른 속도상수의 변화, 가수분해 생성물의 확인, 일반염기 및 치환기 효과 등을 바탕으로 반응 메카니즘을 제안하였다. 즉 pH 4.0 이하에서는 물분자의 첨가가 일어나 가수분해가 진행되며, pH 9.0 이상에서는 전형적인 Michael type의 반응이 일어나며, pH $4.5{\sim}8.0$ 사이에서는 이들 두 반응이 경쟁적으로 일어남을 알았다.

  • PDF

수용액 중 Trimebutine maleate의 안정성 (Studies on the Stability of Trimebutine maleate in Aqueous Solution)

  • 박종현;이계주
    • 약학회지
    • /
    • 제34권6호
    • /
    • pp.415-421
    • /
    • 1990
  • The effects of temperature, pH, light and concentration on the degradation of trimebutine maleate in aqueous solution were investigated on the basis of accelerated stability analysis, and the stabilization of the solution was attempted by addition of several additives. The decomposition of trimebutine maleate in solution followed first-order reaction the was not only accelerated by temperature elevation but also the lower the concentratin the more speeded up the reaction. The decomposition mechanism of trimebtine could be confirmed by hydrolysis of ester bond in the structure. It was assumed trimebutine maleate is so photosensitive that the solution of the drug underwent accelerated decomposition under UV rays. What is more, the degradation of trimebutine solution was supposed to catalyzed by specific acid-base catalysis considered the pH dependence for the hydrolysis of ester, and the solution was most stable over the range of pH 2-2.8 in solution. The additives, citric acid, asparitc acid and glutamic acid, inhibited considerably the decomposition of the drug solution, and these additives might be used as stabilizers in trimebutine maleate solution.

  • PDF

제초성 Flazasulfuron의 Smile 자리옮김 반응 (Smile Rearrangement of Herbicidal Flazasulfuron)

  • 이광재;김용집;김대황;성낙도
    • Applied Biological Chemistry
    • /
    • 제39권1호
    • /
    • pp.70-76
    • /
    • 1996
  • 일련의 pyridylsulfonyl urea들을 합성하고 25%(v/v) 디옥산 수용액의 넓은 pH범위에서 가수분해 반응속도 상수를 측정하였다. pH-효과, 용매 효과($m{\ll}1,\;n{\ll}3$${\mid}m{\mid}{\ll}{\mid}{\ell}{\mid}$), 일반 염기-효과, 산-해리상수(pKa, 3: 4.9 및 5: lit.4.6), 열역학적 활성화 파라미터(${\Delta}H^{\neq}=0.025\;Kcal.mol.^{-1}$${\Delta}S^{\neq}=0.54{\sim}\;-2.19\;e.u.$) 및 생성물 분석 결과로부터 반응속도식을 유도하고 가수분해 반응 메카니즘을 제안하였다. 즉, 비(H)치환체, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(2-pyridylsulfonyl) urea, 3은 산성용액에서 A-2형(또는 $A_{AC}2$)반응 그리고 염기성 용액 에서는 $(E_1)_{anion}$ 메카니즘으로 가수분해 반응이 일어난다. 반면에 trifluoromethyl-치환체, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(3-trifluorornethyl-2-pyridylsulfonyl) urea, 5(Flazasulfuron)는 산성 용액중에서 $A-S_N2Ar$형의 반응으로 생성된 conjugate acid($5H^+$), 그리고 pH 9.0 이상에서는 $(E_1)_{anion}$$(E_1CB)_R$ 반응으로 생성된 conjugate base(CB)를 거쳐 산성 및 염기성 용액중에서 모두 5원자 고리 중간체를 경유하는 Smile 자리옮김 반응으로 산성에서는 3-trifluoromethyl-2-pyridylpyrimidinyl urea(PPU) 그리고 염기성에서는 3-trifluoromethyl-2-pyridyl-4,6-dimethoxy-pyrimidinyl amine(PPA)을 생성하는 가수분해 반응이 일어남을 알았으며 5는 3보다 약 3.5배 빠른 반응속도를 나타내었다.

  • PDF

살충제 buprofezin의 가수분해 반응 메카니즘 (Kinetics and mechanism of hydrolysis of insecticidal buprofezin)

  • 성낙도;유성재;최경섭;권기성
    • 농약과학회지
    • /
    • 제2권1호
    • /
    • pp.46-52
    • /
    • 1998
  • [ $45^{\circ}C$ ]의 15%(v/v) dioxane 수용액중에서 살충성 buprofezin(IUPAC : tert-butylimino-3-iso-propyl-5-phenylperhydro-1,3,5-thiadiazin-4-one)의 가수분해 반응속도상수와 pka상수(5.60)를 측정하고 pH-효과, 용매효과(m=0.34, n=2.45 및 $1{\gg}m$), 열역학적 활성화 파라미터(pH 4.0, ${\Delta}H^{\neq}$= 11.12 $kcal{\cdot}mol^{-1}$, ${\Delta}S^{\neq}$=-5.0e.u. 및 $E_{act.}$=11.76Kcal), 반응 속도식등의 반응 속도론적 및 생성물분석(1-isopropyl-3-phenyl urea) 등의 비속도론적 실험결과를 얻었다. 이들 자료의 검토로부터 pH 8.0이하의 산성용액에서는 특정($k_{H3O+}$)및 일반 산-촉매반응에 의한 $A-S_{E}2$형 및 A-2(또는 $A_{AC}2$)형 반응, 그리고 pH 9.0이상의 알카리성 용액에서는 일반염기 촉매반응($k_{H2O}$)에 의한 친핵성 첨가-제거 ($Ad_{N}-E$) 반응이 사면체($sp^{3}$) 중간체를 경유하는 궤도-조절 반응으로 진행되는 일련의 가수분해 반응메카니즘을 제안하였다. 또한, Buprofezin은 산성(pH8.0이하)용액보다 염기성(pH8.0이상) 용액중($k=10^{-8}sec.^{-1}$)에서 더욱 안정하였으며 $45^{\circ}C$의 중성(pH 7.0) 수용액 중에서 반감기($t=\frac{1}{2}$)는 약 3개월이었다.

  • PDF

산성용액 중에서 Phenyl N-(p-chlorobenzoyl)chloroformimidate 유도체의 가수분해 반응 메카니즘 (Mechanism of the Hydrolysis of Phenyl N-(p-chlorobenzoyl)Chloroformimidate Derivatives in Acid Media)

  • 성낙도;전용구;권기성;김태린
    • 대한화학회지
    • /
    • 제31권4호
    • /
    • pp.352-358
    • /
    • 1987
  • $25^{\circ}C$의 1 : 4 dioxane-물의 혼합용액속에서 파라-치환된 phenyl N-(p-chlorobenzoyl)chloroformimidate (I) 유도체들의 가수분해 반응속도 상수를 측정하고 반응속도식, 치환기 효과$(\rho\>{\rho}^+)$, 생성물 분석 및 분자궤도 함수의 계산 결과로부터 pH3.0 이하에서는 azocarbonium 이온(II)이 생성되는 $S_N1$반응 메카니즘으로 무촉매 반응이 일어나며, pH 4.0이상에서는 전이상태(III)를 지나는 $S_N2$반응 메카니즘을 통하여 염기 촉매반응이 일어남을 제안 할 수 있었다. 4가지 peri planar형태 이성질체들의 상대적인 안정도는 각각 (E-ap) > (Z-ap) > (E-sp) > 및 (Z-ap)이었고, (E-ap)형태의 가장 안정한 입체구조는 benzimidochloroformyl group면에 대하여 Y-치환 phenyl group이 수직$(90^{\circ})$을 이루었으며 (I)의 활성화된 azomethine탄소 원자에 대하여 물분자는 시그마 공격에 의하여 친핵성 반응이 일어난다.

  • PDF

제초제 Flumioxazine의 가수분해 반응성에 관한 분자 궤도론적 이해 (Understand the Molecular Orbital Theory on the Hydrolytic Reactivity of Herbicide Flumioxazine)

  • 성낙도;정훈성
    • 농약과학회지
    • /
    • 제8권4호
    • /
    • pp.265-271
    • /
    • 2004
  • 제초제 flumioxazine의 가수분해 반응성을 분자 궤도(MO)론적으로 검토한 결과, pH 5.0 이하의 산성에서는 $A_{AC}1$형의 반응 메커니즘으로 1,2-dicarboximino group의 carbonyl oxygene 원자$(O_{21})$에 대하여 hydronium ion $(H_3O^+)$에 의한 양성자화$(SH^+)$가 일반 산-촉매반응(general acid catalysis)에 따른 전하조절(charge-control) 반응이 일어난다. pH 8.0이상의 염기성에서는 $B_{AC}2$형의 반응 메커니즘으로 hydroxide anion $(OH^-)$에 의한 특정 염기-촉매반응(specific base catalysis)에 따른 궤도조절(orbital-control) 반응이 일어난다. 그리고 pH $5.0\sim8.0$ 사이에서 두 반응은 경쟁적으로 일어나 친핵성 첨가-제거반응$(Ad_{N-E})$으로 진행된다.

졸-겔법에 의한 TiO2미분말 합성과 반응메카니즘(II): Titanium n-propoxide의 가수분해 (Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide)

  • 명중재;박진구;정용선;경진범;김호건
    • 공업화학
    • /
    • 제8권5호
    • /
    • pp.777-783
    • /
    • 1997
  • n-propanol 용매내에서 titanium n-propoxide($Ti(O^nPr)_4$)의 가수분해반응에 의하여 $TiO_2$ 미분말을 합성하였고, 가수분해속도를 자외선 분광법에 의하여 측정하였다. 분말합성은 water/alkoxide의 농도비가 약 300정도에서 실시하였으며, 물농도, 반응온도, 반응시간 및 반응용액의 산 염기효과에 의한 합성조건을 조사하였다. 반응은 $Ti(O^nPr)_4$의 농도에 비하여 물농도를 과량으로 하여 유사일차반응으로 진행시켰고, 반응속도상수를 Guggenheim method로 계산하였다. 또한 물의 동위원소효과($D_2O$)를 측정하여 반응에 관여하는 물분자의 촉매성을 확인하였다. 실험결과 중성 및 염기성 용액 조건에서 $TiO_2$미분말이 합성되었고, 미세구조 관찰로부터 $TiO_2$입자는 직경 $0.4-0.7{\mu}m$ 정도의 구형입자로 확인되었으며, 물의 농도와 반응온도가 증가할수록, 반응시간이 감소할수록 입자크기는 작아지는 경향을 보였다. 물의 동위원소효과로부터, 물분자는 nucleophilic catalysis로 작용하고 있으며, 반응속도로부터 전이상태에 참여하는 n-value와 열역학적 파라미터를 계산한 결과, $Ti(O^nPr)_4$의 가수분해반응은 이분자 반응인 associative $S_N2$ mechanism으로 진행하는 것으로 추정되었다.

  • PDF

2-염화티오펜술포닐의 가용매 분해반응 (Solvolysis of 2-Thiophenesulfonyl Chloride)

  • 최진철;오지은;강대호;구인선;이익춘
    • 대한화학회지
    • /
    • 제37권8호
    • /
    • pp.695-701
    • /
    • 1993
  • 25$^{\circ}C$에서 메탄올, 에탄올, 아세톤 이성분 혼합수용액과 물, 메탄올에서의 가용매분해반응 속도 상수를 결정하고, 이들 속도자료를 Grunwald-Winstein 식과 Kivinen 관계식을 이용하여 해석하였다. 또한 물과 메탄올에서의 속도론적 용매 동위원소 효과와 알코올-물 혼합용매계에서 생성물 선택성 값을 결정하였다. 염화 2-티오펜술포닐의 가용매 분해반으에 대한 속도론적 용매 동위원소 효과는 메탄올과 물에서 각가 2.24와 1.47이었다. 에탄올-물에서의 술포닐 에스테르 형성에 대한 선택성 값은 최대값을 나타내었다. 메탄올과 물에서의 속도론적 용매 동위원소 효과, 알코올 수용액에서의 선택성 자료와 용매효과로부터, 본 연구에서의 반응은 극성이 낮은 용매계에서는 일반염기 촉매반응과 또는 S$_A$N 반응이 유리하고, 극성이 큰 용매계에서는 S$_N$2 반응의 유리한 반응으로 진행되는 것으로 제안하였다.

  • PDF