Smile Rearrangement of Herbicidal Flazasulfuron

제초성 Flazasulfuron의 Smile 자리옮김 반응

  • Lee, Gwnag-Jae (Department of Agricultural Chemistry, Chungnam National University) ;
  • Kim, Yong-Jip (Department of Agricultural Chemistry, Chungnam National University) ;
  • Kim, Dae-Whang (KRICK, P. O.) ;
  • Sung, Nack-Do (Department of Agricultural Chemistry, Chungnam National University)
  • Published : 1996.02.29

Abstract

A series of the herbicidal pyridylsulfonyl areas, none substitutent, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(2-pyridylsulfonyl) urea, 3 and 3-trifluoromethyl substitutent, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(3-trifluoromethyl-2-pyridylsulfonyl) urea, 5(Flazasulfuron) were synthesizied and the rate of hydrolysis of their has been studied in 25%(v/v) aqueous dioxane at $45^{\circ}C$. From the results of solvent effect($m{\ll}1,\;n{\ll}3\;&\;{\mid}m{\mid}{\ll}{\mid}{\ell}{\mid}$), thermodynamic parameter (${\Delta}S^{\neq}=0.54{\sim}\;-2.19\;e.u.\;&\;{\Delta}H^{\neq}=0.025\;Kcal.mol.^{-1}$), hydrolysis product analysis, $pK_a$ constant(3: 4.9 & 5: lit.4.6) and the rate equation, a marked difference in the kinetics of the reaction of 3 and 5(Flazasulfuron) was observed. It may be concluded that the hydrolysis of 5 proceeds through the $A-S_N2Ar$ reaction via conjugate acid$(5H^+)$ below pH 7.0, whereas, above pH 9.0, the hydrolysis proceeds through irreversibly $(E_1)_{anion}$ and reversibly $(E_1CB)_R$ mechanism via conjugate base(CB), respectively. But in case of 5, $A-S_N2Ar,\;(E_1)anion\;and\;(E_1CB)_R$ mechanism involved Smile rearrangement. The mate of rearrangement of 5 to a 3-trifluoromethyl-2-pyridylpyrimidinyl urea(PPU) in acid and 3-trifluoromethyl-2-pyridyl-4.6-dimethoxypyridinyl amine (PPA) in base was increased about 3.5 times by the introduction of trifluoromethyl group in the 3-position on the 2-pyridyl ring. From the basis of these findings, a possible mechanism for the hydrolysis of 5 was proposed and discussed.

일련의 pyridylsulfonyl urea들을 합성하고 25%(v/v) 디옥산 수용액의 넓은 pH범위에서 가수분해 반응속도 상수를 측정하였다. pH-효과, 용매 효과($m{\ll}1,\;n{\ll}3$${\mid}m{\mid}{\ll}{\mid}{\ell}{\mid}$), 일반 염기-효과, 산-해리상수(pKa, 3: 4.9 및 5: lit.4.6), 열역학적 활성화 파라미터(${\Delta}H^{\neq}=0.025\;Kcal.mol.^{-1}$${\Delta}S^{\neq}=0.54{\sim}\;-2.19\;e.u.$) 및 생성물 분석 결과로부터 반응속도식을 유도하고 가수분해 반응 메카니즘을 제안하였다. 즉, 비(H)치환체, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(2-pyridylsulfonyl) urea, 3은 산성용액에서 A-2형(또는 $A_{AC}2$)반응 그리고 염기성 용액 에서는 $(E_1)_{anion}$ 메카니즘으로 가수분해 반응이 일어난다. 반면에 trifluoromethyl-치환체, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(3-trifluorornethyl-2-pyridylsulfonyl) urea, 5(Flazasulfuron)는 산성 용액중에서 $A-S_N2Ar$형의 반응으로 생성된 conjugate acid($5H^+$), 그리고 pH 9.0 이상에서는 $(E_1)_{anion}$$(E_1CB)_R$ 반응으로 생성된 conjugate base(CB)를 거쳐 산성 및 염기성 용액중에서 모두 5원자 고리 중간체를 경유하는 Smile 자리옮김 반응으로 산성에서는 3-trifluoromethyl-2-pyridylpyrimidinyl urea(PPU) 그리고 염기성에서는 3-trifluoromethyl-2-pyridyl-4,6-dimethoxy-pyrimidinyl amine(PPA)을 생성하는 가수분해 반응이 일어남을 알았으며 5는 3보다 약 3.5배 빠른 반응속도를 나타내었다.

Keywords