• Title/Summary/Keyword: basal expression level

Search Result 119, Processing Time 0.025 seconds

Effects of Mesangi(Capsosiphon fulvecens) Powder on Lipid Metabolism in High Cholesterol Fed Rats (매생이가 고콜레스테롤 식이 투여 흰쥐의 지질대사에 미치는 영향)

  • Kwon, Mi-Jin;Nam, Taek-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.530-535
    • /
    • 2006
  • This study was conducted to investigate the effects of Mesangi (Capsosiphon fulvescens, CF, a green alga) on lipid metabolism in rats, which was examined by analyzing the lipid composition in serum. Male Sprague-Dawley rats were assigned to one of three groups: the basal diet, high cholesterol, and high cholesterol supplemented with 5% dry Mesangi powder (CF-supplemented group). The body weight gains and food efficiency ratios of the rats fed the CF-supplemented diet were lower than those of the rats fed the basal diet. The levels of total lipid, total cholesterol, and LDL-cholesterol in serum were reduced in the CF-supplemented group as compared to the cholesterol group. However, the level of HDL-cholesterol in blood increased with the addition of CF to the diet. Furthermore, levels of total lipid and cholesterol of liver in experimental group fed CF were significantly lower than the cholesterol group. A decrease in leptin expression levels was observed in the CF-supplemented group as compared to the cholesterol group. These results suggest that the addition of CF in hypercholesterolemic rats has an effect on the improvement of serum and liver levels of cholesterol, which may be related to the regulation of the atherogenic index and lipid metabolism in rats fed CF.

Dietary 25(OH)D3 supplementation to gestating and lactating sows and their progeny affects growth performance, carcass characteristics, blood profiles and myogenic regulatory factor-related gene expression in wean-finish pigs

  • Upadhaya, Santi Devi;Chung, Thau Kiong;Jung, Yeon Jae;Kim, In Ho
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.461-474
    • /
    • 2022
  • Objective: This experiment investigated the effects of supplementing vitamin D3-fortified sow and progeny diets with 25(OH)D3 on growth performance, carcass characteristics, immunity, and pork meat quality. Methods: The present study involved the assessment of supplementing the diet of sows and their progeny with or without 25 (OH)D3 in a 2×2 factorial arrangement on the performance and production characteristics of wean-finish pigs. Forty-eight multiparous sows were assigned to a basal diet containing 2000 IU/kg vitamin D3 and supplemented without (CON) or with (TRT) 50 ㎍/kg 25 (OH)D3. At weaning, a total of 80 pigs each from CON and TRT sows were allocated to weaning and growing-finishing basal diets fortified with 2,500 and 1,750 IU/kg vitamin D3 respectively and supplemented without or with 50 ㎍/kg 25(OH)D3. Results: Sows fed 25(OH)D3-supplemented diets improved pre-weaning growth rate of nursing piglets. A significant sow and pig weaning diet effect was observed for growth rate and feed efficiency (p<0.05) during days 1 to 42 post-weaning. Pigs consuming 25(OH)D3-supplemented diets gained weight faster (p = 0.016), ate more (p = 0.044) and tended to convert feed to gain more efficiently (p = 0.088) than those fed CON diet between days 98 and 140 post-weaning. Supplemental 25(OH)D3 improved water holding capacity and reduced drip loss of pork meat, increased serum 25(OH)D3 level, produced higher interleukin-1 and lower interleukin-6 concentrations in blood circulation, downregulated myostatin (MSTN) and upregulated myogenic differentiation (MYOD) and myogenic factor 5 (MYF5) gene expressions (p<0.05). Conclusion: Supplementing vitamin D3-fortified sow and wean-finish pig diets with 50 ㎍/kg 25(OH)D3 significantly improved production performance suggesting their current dietary vitamin D3 levels are insufficient. In fulfilling the total need for vitamin D, it is strongly recommended to add 50 ㎍/kg 25(OH)D3 "on top" to practical vitamin D3-fortified sow and wean-finish pig diets deployed under commercial conditions.

Polymorphic Lengths of Dinucleotide $(GT)^n$ Repeats in Upstream of Human nNOS Exon 1f Gene Play a Role in Modulating the nNOS Transcription: Clinical Implications

  • Shin, Mi-Kyung;Kim, Kyung-Nam;Kim, Chul-Eung;Lee, Sung-Keun;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2008
  • The expression of neuronal nitric oxide synthase (nNOS) is regulated by various spliced first exons (exon 1a-1i), sharing differentially common exon 2 in diverse human tissues. The highly complex structure and regulation of human nNOS gene gave limitations of information for the precise mechanism of nNOS regulation. In the present study, we report that the repeats of polymorphic dinucleotides $(GT)^nA(TG)^n$ repeats located in just upstream to the exon 1f in human nNOS gene play suppressive role in transcription, as shown in the characteristics of Z-DNA motif in other genes. In neuronal and trophoblast cells transfected transiently with luciferase construct without dinucleotide repeats at the 5'-flanking region of exon 1f in nNOS gene, the luciferase activity was increased markedly. However, the presence of the dinucleotide repeats dramatically suppressed the luciferase activity to the basal level, and which was dependent on the length of $(GT)^n$ and $(TG)^n$ repeats. More importantly, we found the polymorphisms in the length of dinucleotide repeats in human. Furthermore, we show for the first time here that there is a significant association of the lengths of polymorphic dinucleotide $(GT)^n$ and $(TG)^n$ repeats with the risk of schizophrenia.

Cilostazol Decreases Ethanol-Mediated TNFalpha Expression in RAW264.7 Murine Macrophage and in Liver from Binge Drinking Mice

  • Lee, Youn-Ju;Eun, Jong-Ryeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2012
  • Alcoholic hepatitis is a leading cause of liver failure in which the increased production of tumor necrosis factor ${\alpha}$ (TNF${\alpha}$) plays a critical role in progression of alcoholic liver disease. In the present study, we investigated the effects of cilostazol, a selective inhibitor of type III phosphodiesterase on ethanol-mediated TNF${\alpha}$ production in vitro and $in$ $vivo$, and the effect of cilostazol was compared with that of pentoxifylline, which is currently used in clinical trial. RAW264.7 murine macrophages were pretreated with ethanol in the presence or absence of cilostazol then, stimulated with lipopolysacchride (LPS). Cilostazol significantly suppressed the level of LPS-stimulated TNF${\alpha}$ mRNA and protein with a similar degree to that by pentoxifylline. Cilostazol increased the basal AMP- activated protein kinase (AMPK) activity as well as normalized the decreased AMPK by LPS. AICAR, an AMPK activator and db-cAMP also significantly decreased TNF${\alpha}$ production in RAW264.7 cells, but cilostazol did not affect the levels of intracellular cAMP and reactive oxygen species (ROS) production. The $in$ $vivo$ effect of cilostazol was examined using ethanol binge drinking (6 g/kg) mice model. TNF${\alpha}$ mRNA and protein decreased in liver from ethanol gavaged mice compared to that from control mice. Pretreatment of mice with cilostazol or pentoxifylline further reduced the TNF${\alpha}$ production in liver. These results demonstrated that cilostazol effectively decrease the ethanol-mediated TNF${\alpha}$ production both in murine macrophage and in liver from binge drinking mice and AMPK may be responsible for the inhibition of TNF${\alpha}$ production by cilostazol.

Induction of Iron Superoxide Dismutase by Paraquat and Iron in Vitreoscilla $C_1$ (Vitreoscilla $C_1$에서 paraquat와 Iron에 의한 Iron Superoxide Dismutase의 유도)

  • 박기인
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.517-521
    • /
    • 2003
  • Superoxide dismutase which is metalloenzyme that decomposes superoxide radicals into hydrogen peroxide and molecular oxygen. Vitreoscilla has FeSOD. Expression of FeSOD to paraquat was largely constitutive. This suggests that the basal level of FeSOD is sufficient to provide protection against superoxide generated during normal aerobic metabolism. Induction of SOD by iron supports that insertion of the active site metal into the corresponding apoprotein. The effect of paraquat on induction by iron seemed that iron brought the synergism effect in SOD activity with paraquat. It suggests that the relief of growth inhibition is due to protection against the lethality of O$_2$afforded by the elevated SOD. There may be control of FeSOD activity posttranslationally. Posttranslation control of enzyme function is particularly feasible for a metalloenzyme, for which conversion of apo- to holoenzyme may be the rate-limiting or regulatory step.

Cdc2 promotes activation of Schwann cell in regenerating axon after sciatic nerve injury in the rat. (좌골신경섬유 재생시 Cdc2 kinase 매개성 슈반세포 활성화의 역할 규명)

  • Han, In-Sun;Seo, Tae-Beom;Kim, Jong-Oh;NamGung, Uk
    • Journal of Haehwa Medicine
    • /
    • v.14 no.1
    • /
    • pp.201-211
    • /
    • 2005
  • Cdc2 kinase is a prototypical cyclin-dependent kinase critical for G2 to M phase cell cycle transition. Yet, its function in the nervous system is largely unknown. Here, we investigated possible role of Cdc2 in axonal regeneration using sciatic nerve system in rat. Cdc2 protein levels and activity were increased in the injured sciatic nerves 3 and 7 days after crush injury and then decreased to basal level 14 days later. Administration of Cdc2 kinase inhibitor roscovitine in vivo at the time of crush injury significantly inhibited axonal regeneration when regrowing axons were analyzed using retrograde tracers. Cdc2 protein levels in cultured Schwann cells which were prepared from sciatic nerves 7 days after crush injury were much higher compared with those from uninjured sciatic nerves, suggesting that Cdc2 protein expression was primarily induced in the Schwann cells. To further investigate Cdc2 function in Schwann cell, we examined changes in cultured Schwann cell proliferation and migration in culture system. Both the number of proliferating Schwann cells and the extent of neurite outgrowth from co-cultured DRG neurons were significantly decreased by Cdc2 inhibitor roscovitine treatment in DRG culture which was prepared from animals with sciatic nerve injury for 7 days. Also, Schwann cell migration in the injured sciatic nerve explant was significantly inhibited by roscovitine treatment. Taken together, the present data suggest that Cdc2 may be involved in peripheral nerve regeneration via Schwann cell proliferation and migration.

  • PDF

Isolation and Characterization of Cyclophilin 1 (ClCyP1) Gene from Codonopsis lanceolata (더덕의 주근에서 유래한 Cyclophilin 1 (ClCyP1) 유전자의 분리 및 분석)

  • 양덕춘;이강;인준교;이범수;김종학
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.239-247
    • /
    • 2004
  • A cyclophilin 1 cDNA clone(GenBank accession no.CF924191) was isolated from the taproot of C. lanceolata and designed as C1CyP1. Determination of the nucleotide sequence of C1CyPl identified an open reading frame of 525bp, which shared high homologies with cyclophilins that were previously reported in other organisms. The C1CyP1 amino acid sequence possesses 7 amino acid residue stretch(KSGKPLH) that is characteristic of plant cytosolic dehydrins. Currently available amino acid residues of plant cyclophilins were compared to examine their phylogenetic relationship to C1CyP1. In the phylogenetic analysis, based on the aligned sequences, C1CyP1 showed high homology with arabidopsis ROC2 and rice CyP1. The transcript that corresponded to C1CyP1 was abundant in callus, but only basal level of transcript was detected in stem, leaf and root. For the study in the defense mechanism against various stresses, we report expression patterns of this gene by quantative RT-PCR.

Changes in Polygalacturonase and Ethylene Biosynthesis of Three Varieties of Apple During Fruit Ripening

  • Kim, Se Hee;Han, Sang Eun;Lee, Hye Eun;Cho, Mi-Ae;Shin, Il Sheob;Kim, Jeong-Hee;Cho, Kang-Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.481-487
    • /
    • 2010
  • The ripening behavior of three apple cultivars, 'Tsugaru', 'Hongro' and 'Fuji' was distinctive and the involvement of POLYGALACTURONASE(PG) in the fruit softening process was confirmed to be ethylene dependent. Fruit softening is genetically coordinated by the action of several cell wall enzymes, including PG which depolymerizes cell wall pectin. Also, loss of firmness is associated with increasing of the ripening hormone, ethylene. In this work, climacteric ripening of three apple cultivars, Tsugaru, Hongro and Fuji, producing different ethylene levels and ripening responses, was examined. Correspondingly in Fuji, a linear and basal ethylene level was observed over the entire period of measurements, and Tsugaru and Hongro displayed a typical climacteric rise in ethylene production. Transcript accumulation of genes involved in ethylene biosynthesis (MdACS3 and MdACO1) and MdPG1 was studied in Tsugaru, Hongro and Fuji cultivars. Expression of MdACO1 transcripts was shown in all three ripened apple fruits. However, the MdACS3 and MdPG1 were transcribed differently in these cultivars. Comparing the MdPG1 of 'Tsugaru', 'Hongro' and 'Fuji', structural difference was discovered by genomic Southern analysis. Overall results pointed out that MdACS3 and MdPG1 play an important role in regulation of fruit ripening in apple cultivar.

Effects of Dietary Prebiotic, Probiotics and Synbiotic on Growth, Nonspecific Immunity, Antioxidant Capacity, Intestinal Microbiota and Antiinflammatory Activity of Hybrid Grouper (Epinephelus akaara ♀×Epinephelus lanceolatus ♂) (사료 내 Prebiotic, Probiotics와 Synbiotic의 첨가가 대왕붉바리(Epinephelus akaara ♀×Epinephelus lanceolatus ♂)의 성장, 비특이적 면역력, 항산화능, 장내 미생물 조성과 항염증에 미치는 영향)

  • Wonhoon Kim;Jongho Lim;Minjoo Kang;Choong Hwan Noh;Kyeong-Jun Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.850-860
    • /
    • 2023
  • The effects of dietary mannan oligosaccharides, Lactobacillus plantarum, Bacillus subtilis, and Bacillus licheniformis supplementation on hybrid grouper Epinephelus akaara ♀×Epinephelus lanceolatus ♂ were evaluated. The fish were fed a basal diet and five other diets consisting of 0.6% mannan oligosaccharides, L. plantarum, B. subtilis, and B. licheniformis and mixture of each 0.15% prebiotic and all the probiotics (designated as MOS, LP, BS, BL, and SYN) for 56 days. Growth performance and feed utilization showed no significant differences among all experimental groups. Lipid level of whole-body was significantly high in MOS and BL groups. Plasma aspartate aminotransferase was significantly low in BL and SYN groups. Nitro-blue tetrazolium, lysozyme and anti-protease, and glutathione peroxidase in BS, SYN, and all probiotic groups, respectively, were significantly high. Intestinal Vibrio bacteria was significantly low in all probiotic and SYN groups. Gene expression of interleukin-1β and interleukin-10 in SYN group; transforming growth factor β2 in MOS and BS groups, toll-like receptor 2-2 in BS and BL groups; and C-type lectin in MOS, LP and SYN groups were significantly upregulated. Our findings indicate that mannan oligosaccharides, L. plantarum, B. subtilis, and B. licheniformis could improve innate immunity, antioxidant capacity, anti-inflammation, and intestinal microbiota of hybrid grouper.

Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae pv. oryzae

  • Hyeonbin Kim;Mi Hee Kim;Ui-Lim Choi;Moon-Soo Chung;Chul-Ho Yun;Youngkun Shim;Jaejun Oh;Sungbeom Lee;Gun Woong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.562-569
    • /
    • 2024
  • Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of ᴰ-limonene, ᴸ-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with ᴰ-limonene and ᴸ-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and ᴰ-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with ᴸ-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.