• 제목/요약/키워드: barrier films

Search Result 493, Processing Time 0.033 seconds

Properties of N doped ZnO grown by DBD-PLD (DBD-PLD 방법을 이용하여 N 도핑된 ZnO 박막의 특성 조사)

  • Leem, Jae-Hyeon;Kang, Min-Seok;Song, Wong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.15-16
    • /
    • 2008
  • We have grown N-doped ZnO thin films on sapphire substrate by employing dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound exciton peak ($A^0X$) that indicated the successful p-type doping of ZnO with N.

  • PDF

Characterization of Aluminum Oxide Thin Film Grown by Atomic Layer Deposition for Flexible Display Barrier Layer Application

  • Kopark, Sang-Hee;Lee, Jeong-Ik;Yang, Yong-Suk;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.746-749
    • /
    • 2002
  • Aluminum oxide thin films were grown on a poly ethylene naphthalate (PEN) substrate at the temperature of 100$^{\circ}C$ using atomic layer deposition method. The film showed very flat morphology and good adhesion to the substrate. The visible spectrum showed higher transmittance in the range from 400 nm to 800 nm than that of PEN. The water vapor transmission value measured with MOCON for 230nm oxide-deposited PEN was 0.62g/$m^2$/day @ 38$^{\circ}C$, while that of PEN substrate was 1.4g/$m^2$/day @ 38$^{\circ}C$.

  • PDF

A Study on the Preparation of Polyamic Acid Alkylamine Salt Langmuir-Biodgett Films (Polyamic Acid 알킬아민 염의 랭뮤어-블로젯막 제작에 관한 연구)

  • Jeong, Soon-Wook;Lim, Hyun-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • Polyimide is a well-known organic dielectric material, which has not only high chemical and thermal stability but also good electrical insulating and mechanical properties. In this research, we have synthesized a polyamic acid(PAA), which is a precursor of the polyimide. To obtain the optimum conditions of polyamic acid alkylamine salt(PAAS) Langmuir-Blodgett(LB) film deposition, the ${\pi}-A$ isotherms were examined by varying subphase temperature, barrier moving speed and spreading amount of solution. Film formation was verified by measuring transfer ratio, absorption of UV/vis spectra and scanning electron microscope(SEM) images.

Flexible Plasma Sheets

  • Cho, Guangsup;Kim, Yunjung
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.23-25
    • /
    • 2018
  • With respect to the electrode structure and the discharge characteristics, the atmospheric pressure plasma sheet of a thin polyimide film is introduced in this study; here, the flexible plasma device of a dielectric-barrier discharge with the ground electrode and the high-voltage electrode formulated on each surface of a polyimide film whose thickness is approximately $100{\mu}m$, that is operated with a sinusoidal voltage at a frequency of 25 kHz and a low voltage from 1 kV to 2 kV is used. The streamer discharge is appeared along the cross-sectional boundary line between two electrodes at the ignition stage, and the plasma is diffused on the dielectric-layer surface over the high-voltage electrode. In the development of a plasma sheet with thin dielectric films, the avoidance of the insulation breakdown and the reduction of the leakage current have a direct influence on the low-voltage operation.

The change of internal stress of metal sputtering films with film thickness and deposition parameters (금속 스퍼터링 막의 두께와 공정 변수에 따른 내부응력 변화)

  • Song, Yeong-Sik;Im, Tae-Hong;Lee, Jae-Ho;Kim, Jong-Ryeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.211-211
    • /
    • 2014
  • 스퍼터링에 의한 박막의 형성에서 박막의 박리나 기판의 휨은 박막내의 내부 응력과 깊은 관련이 있다. 특히 Ti/TiN구조로 많이 사용되는 TiN은 반도체 barrier 층으로 사용이 되기도 하며 하드 코팅 재료로도 많은 연구가 이루어지고 있다. 특히 TiN에 존재하는 높은 압축응력은 연성기판재나 무른 금속재질의 기판을 휘게도 하며, 심할 경우 박막의 박리 현상이 자주 관찰된다. 이렇게 높은 스트레스를 제어하기 위한 기초 연구로 다양한 금속층 박막의 스트레스와 완화시키기 위한 공정 조건 및 스트레스 특성을 확인하였다.

  • PDF

Influence of Corrosion Products on Corrosion Resistance of Al-Mg Coating Films (Al-Mg 코팅막의 부식특성에 대한 부식생성물의 영향)

  • Lee, Seung-Hyo;Kim, Hye-Min;Im, Gyeong-Min;Yun, Yong-Seop;Jeong, Jae-In;Yang, Ji-Hun;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.190-190
    • /
    • 2012
  • 여기서는 5% NaCl 염수분무 환경에 노출된 Al-Mg 다층 코팅막의 부식 거동이 부식생성물 분석을 통하여 평가되었다. 동일 두께의 코팅막이라고 할지라도 Al과 Mg의 코팅층을 다층으로 할수록 내식성이 우수한 경향으로 나타났다. 이때 SEM, EDS 및 XRD 평가 기법을 통하여, 내식성에 기여하는 주요 부식생성물은 수산화알루미늄($Al(OH)_3$)이 지배적인 것으로 확인 되었다. 코팅막이 다층인 경우 차폐(barrier) 특성을 가진 수산화알루미늄이 상대적으로 치밀하게 표면을 피복됨으로써 내식성을 오래도록 유지해 주는 것으로 사료된다.

  • PDF

Emission zone in organic light-emitting diodes(OLEDs)

  • Noh, Sok-Won;Lim, Sung-Taek;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.127-128
    • /
    • 2000
  • Organic light-emitting diodes(OLEDs) are constructed using multilayer organic thin films. The hole-transport layer is PVK and the emitting material is rubrene and $Alq_3$. The emitting layer is doped with rubrene partially. As the partially-doped layer migrate from the interface PVK/emitting layer, the emission peak of rubrene decrease and diminish. By comparing with the previous reports, we propose the zero-field hole injection barrier at ITO/PVK interface and hole-trapping effect of rubrene in host materials as predominant factor to determine the emission zone.

  • PDF

($LEXAN^{(R)}$ for Flexible OLED Display Technology

  • Yan, Min;Ezawa, Hiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.614-615
    • /
    • 2005
  • The use of plastic substrates enables new applications, such as flexible display devices, and other flexible electronic devices, using low cost, roll-to-roll (R2R) fabrication technologies. One of the limitations of polymeric substrate in these applications is that oxygen and moisture rapidly diffuse through the material and subsequently degrade the electro-optical devices. GE Global Research (GEGR) has developed a plastic substrate technology comprised of a superior high-heat polycarbonate ($LEXAN^{(R)}$) substrate film and a unique transparent coating package that provides the ultrahigh barrier (UHB) to moisture and oxygen,chemical resistance to solvents used in device fabrications, and a high performance transparent conductor. This article describes the coating solutions for polycarbonate ($LEXAN^{(R)}$) films and its compatibility with OLED device fabrication processes.

  • PDF

Permittivity Characteristics of SiO/TiN Thin Film (SiO/TiN 박막의 유전율 특성에 관한 연구)

  • 김병인;이우선;김창석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.18-21
    • /
    • 1996
  • SiO 7f the SiO/TiN film is used as the insulating layer and TiN film is chosen as the barrier against the diffusion of Al which is the terminal connected by ohmic contact because TiN has the advantageous properties such as good thermal stability and very low diffusion rate in spite of it\`s relatively low specific resistance. In this study we investigated it\`s electrical and optical characteristics to determine refractive index, absorption coefficient and Permittivity. The films are differently fabricated in thickness method for this experiment.

  • PDF

Fabrication of a Pd/poly 3C-SiC Schottky diode hydrogensensor and its characteristics (Pd/다결정 3C-SiC 쇼트키 다이오드형 수소센서의 제작과 그 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.222-225
    • /
    • 2009
  • This paper describes the fabrication and characteristics of Schottky micro hydrogen sensors for high temperatures by using polycrystalline(poly) 3C-SiC thin films grown on Si substrates with thermal oxide layer using APCVD. Pd/poly 3C-SiC Schottky diodes were made and evaluated by I-V and C-V measurements. Electric current density and barrier height voltage were $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices could operate stably at about 400 $^{\circ}$. The characteristics of implemented sensors have been investigated in terms of sensitivity, linearity of response, response rate, and response time. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature $H_2$ sensor applications.