• Title/Summary/Keyword: barrier films

Search Result 492, Processing Time 0.025 seconds

Preparation and Characterization of UV-cured Polyurethane Acrylate/ZnO Nanocomposite Films (자외선 경화형 폴리우레탄 아크릴레이트/ZnO 나노콤포지트 필름의 제조 및 특성 분석)

  • Jeon, Gwonyoung;Park, Su-il;Seo, Jongchul;Seo, Kwangwon;Han, Haksoo;You, Young Chul
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.610-616
    • /
    • 2011
  • A series of polyurethane acrylate/ZnO (PUA/ZnO) nanocomposite films with different ZnO contents were successfully prepared via a UV-curing system. The synthesis and physical properties including morphological structure, thermal properties, barrier properties and optical properties, and antimicrobial properties were investigated as a function of ZnO concentration. FTIR and SEM results showed that these PUA/ZnO nanocomposite films did not have a strong interaction between PUA and ZnO, which may lead to no increase in thermal stability. By incorporating ZnO nanoparticles, the UV blocking and antibacterial properties increased as the content of ZnO increased. Specially, the oxygen permeability in composite films changed from $2005cc/m^2/day$ to $150cc/m^2/day$ by adding the ZnO nanoparticle, which indicates that the PUA/ZnO nanocomposite films can be applied as good barrier packaging materials. Physical properties of the UV-cured PUA/ZnO nanocomposite film are strongly dependent upon the dispersion state of ZnO nanoparticles and their morphology in the films.

Low temperature growth of Ga2O3 thin films on Si substrates by MOCVD and their electrical characteristics (MOCVD에 의한 Si 기판 위의 Ga2O3 박막 저온 결정 성장과 전기적 특성)

  • Lee, Jung Bok;Ahn, Nam Jun;Ahn, Hyung Soo;Kim, Kyung Hwa;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.45-50
    • /
    • 2022
  • Ga2O3 thin films were grown on n-type Si substrates at various growth temperatures of 500, 550, 600, 650 and 700℃. The Ga2O3 thin films grown at 500℃ and 550℃ were characterized as featureless flat surface. Grown at higher temperatures (600, 650, and 700℃) showed very rough surface morphology. To figure out the annealing effect on the thin films grown at relatively low temperatures (500, 550, 600, 650 and 700℃), the Ga2O3 films were thermally treated at 900℃ for 10 minutes. Crystal structure of the Ga2O3 films grown at 500 and 550℃ were changed from amorphous to polycrystalline structure with flat surface. Ga2O3 film grown at 550℃ was chosen for the fabrication of a Schottky barrier diode (SBD). Electrical properties of the SBDs depend on the thermal treatment were evaluated. A MSM type photodetector was made on the low temperature grown Ga2O3 thin film. The photocurrent for the illumination of 266 nm wavelength showed 5.32 times higher than dark current at the operating voltage of 10 V.

Effects of barrier film on optical properties of quantum dot film (베리어 필름이 양자점 필름의 광특성에 미치는 영향)

  • Lee, Jung-Il;Kim, Young-Ju;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.78-81
    • /
    • 2020
  • Quantum dot efficiency was increased to evaluate reliability and optical characteristics using incidental materials. Quantum dot was manufactured by wrapping a sandwich type quantum layer using a product with a barrier property to prevent water and oxygen because it is vulnerable to oxygen and moisture. We used the three quantum dot films consisting of quantum dot only and quantum dot products consisting of film and barrier film combined with PET in the quantum dot product to evaluate the change over 650 hours under high temperature and high humidity conditions at 60℃ and 90 % humidity. As a result, the quantum dot product with Barrier Film has lowered luminance by 8 %, CIE x by 2 % and CIE y by 8 %. Quantum dot products exposed to moisture and oxygen were oxidized and measured low before measurement.

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

Effect of Ti Concentration on the Microstructure of Al and the Tunnel Magnetoresistance Behaviors of the Magnetic Tunnel Junction with a Ti-alloyed Al-oxide Barrier (Ti 첨가에 따른 Al 미세구조 변화 효과와 산화 TiAl 절연층을 갖는 자기터널접합의 자기저항 특성)

  • Song, Jin-Oh;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.311-314
    • /
    • 2005
  • We investigated the composition dependence of the tunneling magnetoresistance (TMR) behavior and the stability of the magnetic tunnel junctions (MTJs) with TiAlOx barrier and the microstructural evolution of TiAl alloy films. The TMR ratio increased up to $49\%$ at $5.33\;at\%$ Ti. In addition, a significant tunneling magnetoresistance (TMR) value of $20\%$ was maintained after annealing at $450^{\circ}C$, and the breakdown voltage ($V_B$) of and 1.35 V were obtained in the MTJ with $5.33\;at\%$ Ti-alloyed AlOx barrier. These results were closely related to the enhanced quality of the barrier material microstructure in the pre-oxidation state. Ti alloying enhanced the barrier/electrode interface uniformity and reduced microstructural defects. These structural improvements enhanced not only the TMR effect but also the thermal and electrical stability of the MTJs.

Reproducible Resistance Switching and Physical Characteristics of TiOx films with Oxidation Temperature and Time

  • Kim, Jong-Gi;Na, Hee-Do;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.171-171
    • /
    • 2010
  • In this work, we investigated the effect of the oxidation temperature on the unipolar and bipolar resistance switching behaviors of the oxidized TiO-x films. TiOx films on Pt electrodes were fabricated by the oxidation of Ti films at $550^{\circ}C$ for 1 to 3 hours. The unipolar and bipolar resistance switching properties were investigated with the oxidation temperature and time. Also, the crystal structure and the physical properties such as chemical bonding states of TiOx layers were characterized in addition to the resistance switching characteristics. The resistance switching behaviors of TiOx films oxidized at above $450^{\circ}C$ and below $650^{\circ}C$ was shown. So, we investigated that the resistance switching behaviors of TiOx films oxidized at $550^{\circ}C$ with the oxidation time from 1 to 3 hour. The memory windows of unipolar switching in the oxidized TiOx films were reduced with increasing the oxidation time, but those of the bipolar switching were slightly enlarged. The enlargement of rutile TiO2 peak with increasing the oxidation time and temperature was studied by X-ray diffraction. An increase of non-lattice oxygen and Ti3+ in the TiOx films with the oxidation times was investigated by X-ray photoemission spectroscopy. It was expected that the uipolar and bipolar resistive switching of the oxidized TiOx film was strongly related with the migration of non-lattice oxygen anions and schottky barrier height, respectively.

  • PDF

Low-temperature crystallization of high-dielectric (Ba,Sr)$TiO_3$ thin films for embedded capacitors

  • Cho, Kwang-Hwan;Kang, Min-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.21-21
    • /
    • 2010
  • (Ba,Sr)$TiO_3$ (BST) thin film with a perovskite structure has potential for the practical application in various functional devices such as nonvolatile-memory components, capacitor, gate insulator of thin-film transistors, and electro-optic devices for display. Normally, the BST thin films derived from sol-gel and sputtering are amorphous or partially crystalline when processed below $600^{\circ}C$. For the purpose of integrating BST thin film directly into a Si-based read-out integrated circuit (ROIC), it is necessary to process the BST film below $400^{\circ}C$. The microstructural and electrical properties of low-temperature crystallized BST film were studied. The BST thin films have been fabricated at $350^{\circ}C$ by UV-assisted rapidly thermal annealing (RTA). The BST films are in a single perovskite phase and have well-defined electrical properties such as high dielectric constant, low dielectric loss, low leakage current density, and high breakdown voltage. Photoexcitation of the organics contained in the sol-gel-derived films by high-intensity UV irradiation facilitates elimination of the organics and formation of the single-crystalline phase films at low temperatures. The amorphous BST thin film was transformed to a highly (h00)-oriented perovskite structure by high oxygen pressure processing (HOPP) at as low as $350^{\circ}C$. The dielectric properties of BST film were comparable to (or even better than) those of the conventionally processed BST films prepared by sputtering or post-annealing at temperature above $600^{\circ}C$. When external pressure was applied to the well-known contractive BST system during annealing, the nucleation energy barrier was reduced; correspondingly, the crystallization temperature decreased. The UV-assisted RTA and HOPP, as compatible with existing MOS technology, let the BST films be integrated into radio-frequency circuit and mixed-signal integrated circuit below the critical temperature of $400^{\circ}C$.

  • PDF

YBCO coated conductor with a single buffer layer of Yttrium Oxide

  • Park, Chan;Dongqi Shi;Kyujeong Song;Rokkil Ko;Park, Soojeong;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.20-22
    • /
    • 2003
  • Y$_2$O$_3$ films were pulsed laser deposited on cube textured Ni and Ni-W substrates to be used as a single buffer layer of YBCO coated conductor. Initial deposition of $Y_2$O$_3$ films was performed in a reducing atmosphere, and subsequent deposition was done in the base pressure of the chamber and oxygen atmosphere. The $Y_2$O$_3$ films have a strong cube texture (The full width at half maximum of the ø-scan of $Y_2$O$_3$ was 8.4 which was the same as that of metal substrate) and smooth crack-free microstructure. The biaxially textured YBCO films (The full width at half maximum of the ø-scan was 10.2) pulsed laser deposited on the $Y_2$O$_3$/metal exhibited Tc(R=0) of 86.5K and Jc of 0.7 MA/cm2 at 77K in self field, representing that the $Y_2$O$_3$ single buffer layer is an efficient diffusion barrier of Ni and thus very promising for the achievement of high-Jc YBCO coated conductor.

Physical Properties of Methyl Cellulose and Hydroxypropylated Methyl Cellulose Films (Methyl cellulose와 hydroxypropylated methyl cellulose 필름의 물성)

  • Han, Youn-Jeong;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.521-526
    • /
    • 2007
  • In this study, we prepared methyl cellulose (MC) and hydroxypropylated methyl cellulose (HPMC) films with polyethylene glycol (PEG) or polyphosphates as elongation enhancing materials, and with lipid layers as moisture barrier materials. We then determined their physical properties and compared the data with target physical properties such as a tensile property of 13.0 MPa, elongation of 130%, and water vapor permeability of $3.47{\times}10^{-2}ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$. The PEG and polyphosphates were required for enhancing elongation, while the coating method seemed better than the emulsion method when applying the lipid layers. With respect to elongation, the MC films were better than the HPMC films.

The Characterization of Interfaces between ZnO Thin Films and Metal Electrodes (ZnO 박막과 금속전극과의 계면특성조사)

  • 박성순;임원택;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.201-207
    • /
    • 1998
  • We have investigated about interface characteristics between ZnO thin films and metal electrodes when ZnO and metal electrodes were fabricated as piezoelectric vibrators. At this, ZnO thin films were deposited by rf reactive magnetron sputtering method. After fabricating piezoelectric vibrator of Cr/ZnO/Cr structure with optimum condition, we analyse interface characteristics between ZnO thin films and metal electrodes by I-V measurement. AES depth profile, SEM and C-V measurement. From these measurements we found that ZnO piezoelectric vibrators showed good property when they fabricated as Cr/$SiO_2$/ZnO/Cr structure. And we could confirm these things by driving, and measuring vibration displacement of piezoelectric vibrator with $SiO_2$diffusion barrier.

  • PDF