• Title/Summary/Keyword: barrier films

Search Result 492, Processing Time 0.027 seconds

Properties Evaluation of $SnO_2$ : Sb transparent conductive films by $SiO_2$ barrier ($SiO_2$ barrier에 따른 $SnO_2$ : Sb 투명전도막의 특성고찰)

  • 김범석;김창열;임태영;오근호
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.190-190
    • /
    • 2003
  • 여러원소 (Sb, F 등)를 도핑한 SnO$_2$ 투명전도막은 여러 가지 훌륭한 특성으로 Solar cell, heat mirrors, gas sensors, liquid crystal displays, thick film resistor 등과 같이 넓은 범위에서 응용되고 있다. 본 연구에서는 Sb 도핑된 Tin Oxide films이 Sol-gel dip coating법에 의해 준비되었다. SnO$_2$:Sb 용액은 SnC1$_2$ 와 SbC1$_3$ Power를 알코올에 용해하여 Ethylene glycol 와 Citric acid를 첨가하여 합성하였다. 막의 상형성은 XRD와 SEM(Scanning electron microscope)에 의해서 분석되었으며, 특성분석은 투과율(UV/VIS Spectrophotometer)과 표면전기저항(four point probe)으로 분석되었다. SiO$_2$ barrier이 SnO$_2$:Sb 막의 특성에 미치는 영향을 확인하기 위하여 XPS(X-ray photoelectron spectroscopy) 분석이 적용되었다.

  • PDF

Optimal Barrier Coating Processes to maximize the Alignment of Layers on Plastic Substrates

  • Lee, Woo-Jae;Hong, Mun-Pyo;Seo, Jong-Hyun;Rho, Soo-Guy;Hong, Wang-Su;Jeon, Hyung-Il;Kim, Sang-Il;Chung, Kyu-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.988-990
    • /
    • 2005
  • A 5.0-inch plastic TFT-LCD with the resolution of $400{\times}3{\times}300$ lines (120ppi) was developed. The device is a transmissive type with the transparent PES plastic substrates. The PES films with one side barrier coating were used for the device. In order to produce the high resolution display device, the alignments between all the layers for the TFT and CF are essential. The fundamental shrinkage effect and the thermal expansion behavior of the plastic substrates with and without the barrier coatings were studied. The proper annealing processes followed by immediate second bar-rier coating processes provide the optimal alignment between all the layers of the TFT and CF..

  • PDF

Gas Barrier Properties of Nanolaminated Single Inorganic Film Deposited by Neutral Beam Assisted Sputtering Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.465-465
    • /
    • 2012
  • In this study, we developed an Al2O3 nanolaminated single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nanocrystal phase with various grain sizes and lead to the formation of a nanolaminated structure in the single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the nanolaminated Al2O3 thin films by NBAS process have improved more than 40% compared with that of conventional Al2O3 layers by the RF magnetron sputtering process under the same sputtering conditions.

  • PDF

Structural and Electrical Properties of Reactively Sputtered Titanium Nitride Films (DC 반응성 스퍼터링된 TiN 박막의 구조적 및 전기적 특성)

  • 류성용;오원욱;백수현;신두식;오재응;김영남;심태언;이종길
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.49-55
    • /
    • 1992
  • We Have investigated the properties of the titanium nitrite films widely used in VLSI devices as diffusion barrier in Al-based metallization. TiN films were formed by reactive sputtering from Ti target in Ar-N$_2$ mixtures, varying deposition parameters such as N$_2$ partial pressure, substrate temperature, power, and total pressure. All the samples received the heat treatment at 45$0^{\circ}C$ for 30 min. The resulting films are characterized by mechanical stylus($\alpha$-step), x-ray diffraction(XRD), scanning electron microscopy(SEM), and four point probe method. The Tin film properties strongly depend on the deposition condition. The stoichiometry and Ti deposition rate are critically affected by nitrogen partial pressure, and the resistivity, in particular, is dependent on both the substrate temperature and sputtering power.

  • PDF

The Effect of Clay Concentration on Mechanical and Water Barrier Properties of Chitosan-Based Nanocomposite Films

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.925-930
    • /
    • 2006
  • Chitosan-based nanocomposite films were prepared using a solution intercalation method incorporating varying amounts of organically modified montmorillonite (Cloisite 30B) from 0 to 30 wt%. The nanocomposite films prepared were optically clear despite a slight decrease in the transmittance due to the spatial distribution of nanoclay. X-ray diffraction patterns indicated that a certain degree of intercalation or exfoliation formed when the amount of clay in the film was low and that microscale tactoids formed when the clay content in the sample was high (more than 10 wt%). The tensile strength (TS) of the chitosan film increased when the clay was incorporated up to 10 wt% and then decreased with further increases in the clay content of the film. The elongation at break (E) increased slightly upon the addition of low levels of clay up to 5 wt% and then decreased with further increases in the amount of the clay in the film. The water vapor permeability (WVP) decreased exponentially with increasing clay content. The water solubility (WS) and swelling ratio (SR) of the nanocomposite films decreased slightly, indicating that the water resistance of the chitosan film increased due to the incorporation of the nanoclay.

PE-MOCVD로 증착된 Hf(C,N) 박막의 Cu에 대한 확산 방지 특성

  • 노우철;조용기;김영석;정동근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.39-40
    • /
    • 1998
  • Diffusion barrier characteristics of hf(C,N) thin films for Cu metalliztion was investgated. Hf(C,N) thin films were depposited on Si(100) suvstrates by ppulsed D. C pplasma enhanced metal-organic chemical vappor depposition (ppE-MOCVD) using Tetrakis diethyl amido hafnium (Hf[NC2H5)2]4 : TDEAHf) and N2 as pprecursors. X-ray diffraction analyses sheet resistance measurment and Rutherford backscattering sppectroscoppy analyses revealed that HF(C,N) films pprevent diffusion of Cu fairly well upp to $600^{\circ}C$. At $700^{\circ}C$ however Hf(C,N) films allowed a significant diffusion of Cu into the Si substrate.

  • PDF

Electrical Properties of Organic Materials as Low Dielectric Constant Materials

  • Oh Teresa;Kim Hong Bae;Kwon Hak Yong;Son Jae Gu
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.67-72
    • /
    • 2005
  • The bonding structure of organic materials such as fluorinated amorphous carbon films was classified into two types due to the chemical shifts. The electrical properties of fluorinated amorphous carbon films also showed very different effect of two types notwithstanding a very little difference. Fluorinated amorphous carbon films with the cross-link breakage structure existed large leakage current resulting from effect of the electron tunneling. Increasing the cation due to the electron-deficient group increased the barrier height of the films with the cross-link amorphous structure, therefore the electric characteristic of the final materials with low dielectric constant was also improved. The lowest dielectric constant is 2.3 at the sample with the cross-link amorphous structure.

  • PDF

Characteristics of Films Based on Chitosans Isolated from Todarodes pacificus

  • Chung, Dong-Hwa;Kim, Sang-Moo;Kim, Won-Tae;Shin, Il-Shik;Park, Hoon
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.433-436
    • /
    • 2005
  • Chitosans were obtained with varying deacetylation times using the ${\beta}$-chitin isolated from Todarodes pacificus, and their deacetylation degrees and average molecular weights were determined. Films prepared with the squid chitosans were characterized by estimating their tensile strengths, percent elongations, water vapor permeabilities, degree of swelling, and temperatures of glass transition and thermal decomposition. The results suggest that the squid chitosan films were comparable to common crustacean chitosan films in regard of mechanical, moisture barrier, and thermal properties, although further, multilateral investigations are necessary to make a more definitive conclusion.

Preparation of Carrageenan-based Antimicrobial Films Incorporated With Sulfur Nanoparticles

  • Saedi, Shahab;Shokri, Mastaneh;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.3
    • /
    • pp.125-131
    • /
    • 2020
  • Carrageenan-based functional films were prepared by adding two different types of sulfur nanoparticles (SNP) synthesized from sodium thiosulfate (SNPSTS) and elemental sulfur (SNPES). The films were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), and thermal gravimetric analysis (TGA). Also, film properties such as UV-visible light transmittance, water contact angle (WCA), water vapor permeability (WVP), mechanical properties, and antibacterial activity were evaluated. SNPs were uniformly dispersed in the carrageenan matrix to form flexible films. The addition of SNP significantly increased the film properties such as water vapor barrier and surface hydrophobicity but did not affect the mechanical properties. The carrageenan/SNP composite film showed some antibacterial activity against foodborne pathogenic bacteria, L. monocytogenes and E. coli.

Organic-inorganic Nanocomposite Adhesive with Improved Barrier Property to Water Vapor for Backsheets of Photovoltaic Modules (태양광모듈용 저가형 백시트 제조를 위한 고수분차단성 유무기 나노복합형 접착제)

  • Hwang, Jin Pyo;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.530-537
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally energy conversion devices to generate electricity via photovoltaic effect of semiconductors from solar energy. One of key elements in PV modules is "Backsheet," a multilayered barrier film, which determines their lifetime and energy conversion efficiency. The representative Backsheet is composed of chemically resistant poly(vinyl fluoride) (PVF) and cheap poly(ethylene terephthalate) (PET) films used as core and skin materials, respectively. PVF film is too expensive to satisfy the market requirements to Backsheet materials with production cost as low as possible. The promising alternatives to PVF-based Backsheet are hydrocarbon Backsheets employing semi-crystalline PET films instead of PVF film. It is, however, necessary to provide improved barrier property to water vapor to the PET films, since PET films are suffering from hydrolytic decomposition. In this study, a polyurethane adhesive with reduced water vapor permeation behavior is developed via a homogeneous distribution of hydrophobic silica nanoparticles. The modified adhesive is expected to retard the hydrolysis of PET films located in the core and inner skin. To clarify the efficacy of the proposed concept, the mechanical properties and electrochemical PV performances of the Backsheet are compared with those of a Backsheet employing the polyurethane adhesive without the silica nanoparticles, after the exposure under standard temperature and humidity conditions.