• Title/Summary/Keyword: barcoding gap

Search Result 7, Processing Time 0.024 seconds

First Record of the Monotypic Species, Nonparahalosydna pleiolepis (Polychaeta: Polynoidae) from Korean Waters, with Its DNA Barcoding Information

  • Kim, Kwang-Soo;Choi, Hyun Ki;Lee, Wonchoel;Park, Taeseo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.3
    • /
    • pp.258-263
    • /
    • 2020
  • The aim of this study is to report monotypic species, Nonparahalosydna pleiolepis(Marenzeller, 1879) for the first time from Korean waters with its DNA barcoding data. We collected individuals of the species from the subtidal zone of southern coast of Korea through scuba diving. To estimate DNA barcoding gap, the pairwise genetic distances were calculated between N. pleiolepis and its congeners (Halosydna brevisetosa Kinberg, 1856 and Lepidonotus squamatus (Linnaeus, 1758)) based on the cytochrome c oxidase subunit I gene (COI). Inter-specific genetic distances ranged from 18.7% to 24.6%, while intra-specific genetic distance within N. pleiolepis ranged from 0.3% to 0.5%. The maximum intra-specific genetic distance among the three species was 1.4%. The morphological diagnosis of N. pleiolepis with a taxonomic note on the species were also provided.

DNA barcoding of Schisandraceae in Korea (한국산 오미자과의 DNA 바코드)

  • Youm, Jung Won;Han, Sang-Wook;Seo, Seon Won;Lim, Chae Un;Oh, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.3
    • /
    • pp.273-282
    • /
    • 2016
  • The establishment of a DNA barcode database at the regional scale and assessments of the utility of DNA barcodes are crucial for conservation biology and for the sustainable utilization of biological resources. Schisandraceae is a small family consisting of ca. 45 species. It contains many economically important species, such as Schisandra chinensis, which is widely used as a source in tonic beverages and in oriental medicine. In Korea, three species, S. chinensis, S. repanda, and Kadsura japonica, are distributed. We evaluated the level of variation of the DNA sequences of rbcL, matK, and the ITS regions from 13 accessions representing the distributional range of the three species. The three DNA barcode regions were easily amplified and sequenced. The minimum values of the interspecific genetic distances among S. chinensis, S. repanda, and K. japonica either separately or in combination are 4- to 23-fold higher than the maximum value of the intraspecific distance, showing that there is a clear DNA barcoding gap in the regions for Korean Schisandraceae. Phylogenetic analyses of the three DNA barcode regions, separately and simultaneously, indicate that all of the DNA barcode regions are useful for identifying a species of Schisandraceae in Korea. The distinctiveness of the three species of Schisandraceae was also supported at the species level when Chinese and Japanese populations were added. The results of this study indicate that three concatenated regions constitute the best option for DNA barcoding in Schisandraceae in Korea.

Overcoming taxonomic challenges in DNA barcoding for improvement of identification and preservation of clariid catfish species

  • Piangjai Chalermwong;Thitipong Panthum;Pish Wattanadilokcahtkun;Nattakan Ariyaraphong;Thanyapat Thong;Phanitada Srikampa;Worapong Singchat;Syed Farhan Ahmad;Kantika Noito;Ryan Rasoarahona;Artem Lisachov;Hina Ali;Ekaphan Kraichak;Narongrit Muangmai;Satid Chatchaiphan6;Kednapat Sriphairoj;Sittichai Hatachote;Aingorn Chaiyes;Chatchawan Jantasuriyarat;Visarut Chailertlit;Warong Suksavate;Jumaporn Sonongbua;Witsanu Srimai;Sunchai Payungporn;Kyudong Han;Agostinho Antunes;Prapansak Srisapoome;Akihiko Koga;Prateep Duengkae;Yoichi Matsuda;Uthairat Na-Nakorn;Kornsorn Srikulnath
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.39.1-39.15
    • /
    • 2023
  • DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

Are Cryptic Species Real?

  • Crous, Pedro W.
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.29-29
    • /
    • 2014
  • Since Darwin and Wallace introduced the concept on the evolution of species, scientists have been furiously debating what species are, and how to define them. This basic yet intriguing question has bothered us ever since, as communicating to fellow biologists about fungal species is the very cornerstone of mycology. For the species presently known, this has largely been accomplished via Latin binomials linked to morphology in the absence of DNA barcodes. In recent years mycologists have embraced the ribosomal ITS as official barcode region for Fungi, and this locus is also mainly used in environmental pyrosequencing studies. Furthermore, DNA data can now also be used to describe sterile species in the absence or lack of distinct morphological structures. Recent developments such as the registration of names in MycoBank, and linking the phenotype to the genotype, have significantly changed the face of fungal systematics. By employing the Consolidated Species Concept, incorporating genealogical concordance, ecology and morphology, robust species recognition is now possible. Several international initiatives have since built on these developments, such as the DNA barcoding of holdings of Biological Resource Centres, followed by the Genera of Fungi Project, aiming to recollect, and epitypify all type species of all genera. What these data have revealed, is that most genera are poly- and paraphyletic, and that morphological species normally encompass several genetic entities, which may be cryptic species. Once we provide a stable genetic backbone capturing our existing knowledge of the past 250 years, we will be able to accommodate novelties obtained via environmental sequencing platforms. Being able to communicate these species to other biologists in a clear manner that is DNA-based, will enable scientists to elucidate the importance, role and ecological interactions that these fungi have on our planet.

  • PDF

DNA Barcoding of Antarctic Freshwater Copepod Boeckella poppei (Crustacea: Copepoda: Calanoida: Centropagidae) Inhabiting King George Island, South Shetland Islands, Antarctica

  • Kang, Seunghyun;Jo, Euna
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.4
    • /
    • pp.396-399
    • /
    • 2020
  • The Antarctic freshwater copepod, Boeckella poppei (Mrazek, 1901), has the widest range of distribution extending from southern South America to Antarctic continent, among all Boeckella species. Boeckella poppei is the only freshwater copepod known to be inhabiting the Antarctic continent. In present study, we analyzed the DNA barcodes of the mitochondrial cytochrome c oxidase subunit I (COI) gene of B. poppei from King George Island, Antarctica. The intraspecific genetic distances varied from 0% to 13% and interspecific genetic distances ranged from 11% to 14%. The overlap of DNA barcode gap suggests careful threshold-based delimitation of species boundaries.

Molecular Identification of Pooideae, Poaceae in Korea (국내 농경지에 발생하는 포아풀아과 잡초의 분자생물학적 동정)

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.18-25
    • /
    • 2015
  • A universal DNA barcoding for agricultural noxious weeds is a powerful technique for species identification without morphological knowledge, by using short sections of DNA from a specific region of the genome. Two standard barcode markers, chloroplast rbcL and matK, and a supplementary nuclear ribosomal Internal Transcribed Spacer (ITS) region were used to examine the effectiveness of the markers for Pooideae barcoding using 163 individuals of 29 taxa across 16 genera of Korean Pooideae. The rbcL and ITS revealed a good level of amplification and sequencing success while matK did not. Barcode gaps were 78.6% for rbcL, 96.2% for matK, and 91.7% for ITS, respectively. Resolving powers were 89.3% for rbcL, 92.3% for matK, and 79.1% for ITS. The matK obtained the best both barcode gap and resolving power. However, it should be considered not to employ matK for Pooideae barcode because of low rate of PCR amplification and sequencing success. As a single DNA marker, rbcL and ITS were reasonable for Pooideae barcode. Barcode gap and resolving power were increased when ITS was incorporated into the rbcL. The barcode sequences were deposited to the National Center for Biotechnology Information (NCBI) database for public use.

DNA barcoding of Raptor carcass collected in the Paju city, Korea (파주시에서 수집한 폐사체 맹금류의 DNA 바코드 연구)

  • Jin, Seon-Deok;Paik, In-Hwan;Lee, Soo-Young;Han, Gap-Soo;Yu, Jae-Pyoung;Paek, Woon-Kee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.523-530
    • /
    • 2014
  • One juvenile raptor which was not able to be identified due to its head damage was discovered on a roadside in Janggok-ri, Jori-eup, Paju on 28th June, 2011. The species was identified by DNA barcoding. After polymerase chain reaction (PCR) of the mitochondrial cytochrome c oxidase subunit I gene (COI), we obtained 695 bp sequences. We analyzed the obtained COI sequence with similar sequences from the BOLD systems and BLAST of the NCBI Genbank, and discovered that its sequence showed 100 % similarity values with the one of the five gray-faced buzzards which were previously researched. In addition, it was confirmed to be a female through sex determination using DNA. Such results are important information as it confirms the breeding of the gray-faced buzzards for the first time in 43 years since its breeding was last recorded in 1968, in Paju. Wildlife rescue center needs to work with adjacent consigned registration and preservation institutions when carcass of wild animals is collected or DNA samples are obtained for more accurate both species and sex identification through a systematic management system in the future. Furthermore, the obtained DNA sample of the gray-faced buzzard and COI gene, DNA barcode, could be used as reference standards for similar researches in the future.