• Title/Summary/Keyword: band-width efficiency

Search Result 64, Processing Time 0.035 seconds

Reserved Slot Allocation Scheme for Voice Service in WATM MAC (무선 비동기 전송모드 매체 접근제어에서 음성서비스를 위한 예약 슬롯 할당 알고리즘)

  • 김관웅;배성환;전병실
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.101-108
    • /
    • 2001
  • In this paper we focus on dynamic reservation slot allocation scheme for supporting QoS of a voice traffic in WATM MAC. Especially, voice traffic is the most important real-time object, and so we propose a new MAC protocol for voice traffic over WATM networks in the multimedia environment. According to the characteristics of voice traffic which is repeatedly in silent state and active state, new protocol allocates reservation slots dynamically with respect to the number of silent voice source of which starting time is stored to the state table in base station (BS). The simulation results show that the proposed protocol has better performance than slotted ALOHA in average access delay, collision rate, better than NC-PRMA(Non Collision Packet Reservation Multiple Access) in band width efficiency, and can provide a certain level of QoS requirement by the given slot assignment even though the number of voice terminals is increased.

  • PDF

Automatic Left/Right Boom Angles Control System for Upland Field (전자용 붐방제기의 붐의 좌우 경사각 자동제어)

  • 이중용;김영주;이채식
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.457-462
    • /
    • 2000
  • Boom sprayers have been known by their excellency in field efficiency worker’s safety and pest control efficacy. The boom sprayer in Korea that was developed for paddy field is not suitable for upland field of which shape is irregular and inclination is steep, due to heavy chemical tank long boom width and manual on-off control of spraying. The goal of the study was to develope a boom control system that could control boom angles of left and right boom automatically and independently corresponding to local field slope. The prime mover was selected as a cultivating tractor. Main results of this study were as follows. 1. Ultrasonic sensor whose response time was 0.1s and response angle was within $\pm$20$^{\circ}$was selected to measure distance. Voltage output of the sensor(X, Volt) had a highly significant linear relationship with the vertical distance between the sensor and ground surface(Y, mm) as follows; Y=0.0036X-0.437 2. Left and right section of the boom could be folded up by a position control device(on-off control) which could control the left and right boom independently corresponding to local slope by equalizing distances between the sensor and boom at the center and left/right boom. Most reliable DB(dead band) was experimentally selected to be 75$\Omega$(6cm). 3. At traveling velocity of 0.3~0.5m/s RMS of error between desired and achieved height was less than 4.5cm The developed boom angle controller and boom linkage system were evaluated to be successful in achieving the height control accuracy target of $\pm$10cm.

  • PDF

Orange Phosphorescent Organic Light-emitting Diodes Using a Spirobenzofluorene-type Phospine Oxides as Host Materials

  • Jeon, Young-Min;Lee, In-Ho;Lee, Chil-Won;Lee, Jun-Yeob;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2955-2960
    • /
    • 2010
  • Spiro-type orange phosphorescent host materials, 9-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-1P) and 5-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-2P) were successfully prepared by a lithiation reaction followed by a phosphination reaction with diphenylphosphinic chloride. The EL characteristics of OPH-1P and OPH-2P as orange host materials doped with iridium(III) bis(2-phenylquinoline)acetylacetonate ($Ir(pq)_2acac$) were evaluated. The electroluminescence spectra of the ITO (150 nm)/DNTPD (60 nm)/NPB (30 nm)/OPH-1P or OPH-2P: $Ir(pq)_2acac$ (30 nm)/BCP (5 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) devices show a narrow emission band with a full width at half maximum of 75 nm and $\lambda_{max}$ = 596 nm. The device obtained from OPH-1P doped with 3% $Ir(pq)_2acac$ showed an orange color purity of (0.580, 0.385) and an efficiency of (14 cd/A at 7.0 V). The ability of the OPH-P series to combine a high triple energy with a low operating voltage is attributed to the inductive effect of the P=O moieties and subsequent energy lowering of the LUMO, resulting in the enhancement of both the electron injection and transport in the device. The overall result is a device with an EQE > 8% at high brightness, but operating voltage of less than 6.4 V, as compared to the literature voltages of ~10 V.

Performance Evaluation by Frame Discard Methods in Adaptive Bandwidth Allocation Technique for Transmission Plan of Game Moving Picture (게임 동영상 전송을 위한 적응형 대역폭 방법에서 프레임 폐기 방법에 의한 성능 평가)

  • Lee, Myoun-Jae;Kim, Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.9 no.3
    • /
    • pp.433-439
    • /
    • 2008
  • A moving picture in online game is one of major ways to advertise online games, which gives a lot of help in playing game. In this case, a moving picture is compressed to variable bit rate for efficient storage use and network resource efficiency. Adaptable bandwidth allocation technique builds a transmission plan of a game moving picture. And, then some frames are discarded when transmission rate by the transmission plan is larger than available transmission rate, until transmission rate satisfies available transmission rate. Thus, performance evaluation factors in adaptable bandwidth allocation technique may be dependent on discarding order of a frame which transmission rate is much influenced. In this paper, in order to show the performance, a CBA algorithm, an MCBA algorithm, an MVBA algorithm, [6] and [7] algorithm were applied to a transmission plan in the adaptable band width allocation technique using various frame discard methods and performance evaluation factors were compared in among smoothing algorithms.

  • PDF

Design of QAPM Modulation for Low Power Short Range Communication and Application of Compressive Sensing (저전력 근거리 통신을 위한 QAPM 변조의 설계와 압축 센싱의 적용)

  • Kim, So-Ra;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.797-804
    • /
    • 2012
  • In this paper, we propose a QAPM(Quadrature Amplitude Position Modulation) modulation using compressive sensing for the purpose of power efficiency improvement. QAPM modulation is a combination technique of QAM (quadrature amplitude modulation) and PPM(Pulse Position Modulation). Therefore it can decrease the transmission power and improve BER performance. Moreover, even if the band width is widened when the number of positions is increased, high sparsity characteristic caused by position number can be applied to compressive sensing technique. Compressive sensing has recently studied as a method that can be successfully reconstructed from the small number of measurements for sparse signal. Therefore, the proposed system can lower price of receiver by reducing sampling rate and has performance improved by using QAPM modulation. And the results are confirmed through simulations.

Fabrication and Characterization of InGaN/GaN LED structures grown on selectively wet-etched porous GaN template layer

  • Beck, Seol;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.124-124
    • /
    • 2010
  • Much interest has been focused on InGaN-based materials and their quantum structures due to their optoelectronics applications such as light emitting diode (LED) and photovoltaic devices, because of its high thermal conductivity, high optical efficiency, and direct wide band gap, in spite of their high density of threading dislocations. Build-in internal field-induced quantum-confined Stark effect in InGaN/GaN quantum well LED structures results in a spatial separation of electrons and holes, which leads to a reduction of radiative recombination rate. Therefore, many growth techniques have been developed by utilizing lateral over-growth mode or by inserting additional layers such as patterned layer and superlattices for reducing threading dislocations and internal fields. In this work, we investigated various characteristics of InGaN multiple quantum wells (MQWs) LED structures grown on selectively wet-etched porous (SWEP) GaN template layer and compared with those grown on non-porous GaN template layer over c-plane sapphire substrates. From the surface morphology measured by atomic force microscope, high resolution X-ray diffraction analysis, low temperature photoluminescence (PL) and PL excitation measurements, good structural and optical properties were observed on both LED structures. However, InGaN MQWs LED structures grown on SWEP GaN template layer show relatively low In composition, thin well width, and blue shift of PL spectra on MQW emission. These results were explained by rough surface of template layer, reduction of residual compressive stress, and less piezoelectric field on MQWs by utilizing SWEP GaN template layer. Better electrical properties were also observed for InGaN MQWs on SWEP GaN template layer, specially at reverse operating condition for I-V measurements.

  • PDF

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

Design of X-band 40 W Pulse-Driven GaN HEMT Power Amplifier Using Load-Pull Measurement with Pre-matched Fixture (사전-정합 로드-풀 측정을 통한 X-대역 40 W급 펄스 구동 GaN HEMT 전력증폭기 설계)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan;Jin, Hyeong-Seok;Park, Jong-Sul;Jang, Ho-Ki;Kim, Bo-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1034-1046
    • /
    • 2011
  • In this paper, a design and fabrication of 40 W power amplifier for the X-band using load-pull measurement of GaN HEMT chip are presented. The adopted active device for power amplifier is GaN HEMT chip of TriQuint company, which is recently released. Pre-matched fixtures are designed in test jig, because the impedance range of load-pull tuner is limited at measuring frequency. Essentially required 2-port S-parameters of the fixtures for extraction optimal input and output impedances is obtained by the presented newly method. The method is verified in comparison of the extracted optimal impedances with data sheet. The impedance matching circuit for power amplifier is designed based on EM co-simulation using the optimal impedances. The fabricated power amplifier with 15${\times}$17.8 $mm^2$ shows the efficiency above 35 %, the power gain of 8.7~8.3 dB and the output power of 46.7~46.3 dBm at 9~9.5 GHz with pulsed-driving width of 10 usec and duty of 10 %.

Received Power Regulation of LF-Band Wireless Power Transfer System Using Bias Control of Class E Amplifier (E급 증폭기의 바이어스 조정을 통한 LF-대역 무선 전력 전송시스템의 수신 전력 안정화)

  • Son, Yong-Ho;Han, Sang-Kyoo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.883-891
    • /
    • 2013
  • In wireless smart phone charging scenario, the transmitter pad is larger than the size of the receiver pad. Thus, it is important to supply a constant power to the receiver regardless of its location. In this paper, we propose a new method to regulate the receiver's power by adjusting a drain bias of class E power amplifier. The proposed LF-band wireless power transfer system is as follows: a buck converter power supply which is controlled by a pulse width modulation(PWM) IC TL494, a class E amplifier using a low cost IRF510 power MOSFET, a transmitter coil whose dimension is $16cm{\times}18cm$, a receiver coil whose dimension is $6cm{\times}8cm$, and a full bridge rectifier using Schottky diodes. A measured performance show a maximum output power of 4 W and system efficiency of 67 % if we fix the bias voltage. If we adjust the bias voltage, the received power can be maintained at a constant power of 2 W regardless of receiver pad location.

Design and Fabrication of 5 GHz Band MMIC Power Amplifier for Wireless LAN Applications Using Size Optimization of PHEMTs (PHEMT 크기 최적화를 이용한 무선랜용 5 GHz 대역 MMIC 전력증폭기 설계 및 제작)

  • Park Hun;Hwang In-Gab;Yoon Kyung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.634-639
    • /
    • 2006
  • In this paper an MMIC 2-stage power amplifier is designed and fabricated for 5GHz wireless LAN applications using $0.5{\mu}m$ gate length PHEMT transistors. The PHEMT gate width is optimized in order to meet the linearity and efficiency of the MMIC power amplifier. The $0.5{\mu}m\times600{\mu}m$ PHEMT for the drive stage and $0.5{\mu}m\times3000{\mu}m$ PHEMT for the amplification stage are the optimized sizes to achieve more than 25dBc of third order IMD at the power level of 3dB back-off from the input P1dB and more than 22dBm output power under a supply voltage of 3.3V. The two-stage MMIC power amplifier is designed to be used for the both of HIPERLAN/2 and IEEE 802.11a because of its broadband characteristics. The fabricated PHEMT MMIC power amplifier exhibits a 20.1dB linear power gain, a maximum 22dBm output power, a 24% power added efficiency under 3.3V supply voltage. The input and output on-chip matching circuits are included on a chip of $1400\times1200{\mu}m^2$.