• Title/Summary/Keyword: band-gap engineering

Search Result 735, Processing Time 0.03 seconds

Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals

  • Yu, Hye-Min;Kim, Ah-Ram;Moon, Jun-Hyuk;Lim, Jong-Sung;Choi, Kyu-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2178-2182
    • /
    • 2011
  • Recently, the synthesis of ordered macroporous materials has received much attention due to its potential use as photonic band gap materials.$^1$ In this study, we have used the three-dimensional (3D) latex array template impregnated with benzenesulfonic acid (BSA), which is capable of catalyzing the reaction using tetraethyl orthosilicate (TEOS) as a precursor and distilled water. The polystyrene (PS) templates were reacted with TEOS in $scCO_2$ at 40 $^{\circ}C$ and at 80 bar. In the reactor, TEOS was filtrated into the PS particle lattice. After the reaction, porous silica materials were obtained by calcinations of the template. The stability test of the PS template in pure $CO_2$ was conducted before the main experiment. Scanning electron microscopy (SEM) images showed that the reaction in $scCO_2$ takes place only on the particle surface. This new method using $scCO_2$ has advantages over conventional sol-gel processes in its capability to control the fluid properties such as viscosity and interfacial tension. It has been found that the reaction in $scCO_2$ occurs only on the particle surface, making the proposed technique as more rapid and sustainable method of synthesizing inverse opal materials than conventional coating processes in the liquid phase and in the vapor phase.

Growth and Characterization of Conducting ZnO Thin Films by Atomic Layer Deposition

  • Min, Yo-Sep;An, Cheng-Jin;Kim, Seong-Keun;Song, Jae-Won;Hwang, Cheol-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2503-2508
    • /
    • 2010
  • ZnO thin films were grown on Si or $SiO_2$/Si substrates, at growth temperatures ranging from 150 to $400^{\circ}C$, by atomic layer deposition (ALD) using diethylzinc and water. Despite the large band gap of 3.3 eV, the ALD ZnO films show high n-type conductivity, i.e. low resistivity in the order of $10^{-3}\;{\Omega}cm$. In order to understand the high conductivity of ALD ZnO films, the films were characterized with X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, elastic recoil detection, Rutherford backscattering, Photoluminescence, and Raman spectroscopy. In addition, the various analytical data of the ZnO films were compared with those of ZnO single crystal. According to our analytical data, metallic zinc plays an important role for the high conductivity in ALD ZnO films. Therefore when the metallic zinc was additionally oxidized with ozone by a modified ALD sequence, the resistivity of ZnO films could be adjusted in a range of $3.8{\times}10^{-3}\;{\sim}\;19.0\;{\Omega}cm$ depending on the exposure time of ozone.

Implementation of UHF RFID Tag Emulator (UHF 대역의 RFID 태그 에뮬레이터 구현)

  • Park, Kyung-Chang;Kim, Hanbyeori;Lee, Sang-Jin;Kim, Seung-Youl;Park, Rae-Hyeon;Kim, Yong-Dae;You, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.12-17
    • /
    • 2009
  • This paper presents a tag emulator for a UHF band RFID system. The tag emulator supports the 1800-6C and EPC global class 1 generation 2 standards. The transmitted signal from a reader is generated using the PIE coding and ASK modulation methods. Signals of a tag are from the FM0 coding and ASK modulation methods. The ARM7 processor carries out the overall control of the system and signal analysis of incoming data. The verification of the tag emulator employs the application platform implemented in C++. Users can define parameter values for protocol during the application run. The tag emulator presented in this paper allows evaluating various design alternatives of the target RFID system in real applications.

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

CMP Properties of ZnO thin film deposited by RF magnetron sputtering (RF-sputtering에 의해 제작된 ZnO박막의 연마특성)

  • Choi, Gwon-Woo;Han, Sang-Jun;Lee, Woo-Sun;Park, Sung-Woo;Jung, Pan-Geom;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.166-166
    • /
    • 2007
  • ZnO는 육방정계(wurtzite) 결정구조를 지니며 상온에서 3.37eV의 wide band gap을 갖는다. ZnO의 엑시톤 결합 에너지는 GaN에 비해 2.5배 높은 60meV로서 고효율의 광소자 적용 가능성이 높다. 또한 고품위의 박막합성이 가능하다. 이러한 특성 때문에 display소자의 투명전극, 광전소자, 바리스터, 압전소자, 가스센서 등에 폭 넓게 응용되고 있다. ZnO박막의 제조는 스퍼터링, CVD, 진공증착법, 열분해법 등이 있다. 본 논문에서는 RF 마그네트론 스퍼터에 의해 제작된 ZnO 박막에 CMP공정을 수행하여 연마율과 비균일도 특성 및 광투과 특성을 연구하였다. ZnO박막은 $2{\times}2Cm$의 Corning glass위에 증착되었다. 로터리 펌프와 유확산 펌프를 이용하여 초기진공을 $2{\times}10^{-6}$ Torr까지 도달시킨 후 Ar과 $O_2$를 주입하였다. 증착은 상온에서 이루어졌으며 공정압력은 $6{\times}10^{-2}$Torr이였다. 초기의 불안정한 상태의 풀라즈마를 안정시키기 위해 셔터를 이용하여 pre-sputtering을 하였다. CMP 공정조건은 플레이튼 속도, 슬러리 유속, 압력은 칵각 60rpm, 90ml/min, $300g/cm^2$으로 일정하게 유지하였으며 헤드속도는 20rpm에서 100rpm까지 증가시키면서 연마특성을 조사하였다. 실리카슬러리의 적합성을 알아보기 위해 DIW와 병행하여 CMP공정을 수행하고 비교 분석하였다. CMP공정 결과 광투과도는 굉탄화된 표면의 확보로 인해 향상된 특성을 보였다. 실리카 슬러리를 사용하여 CMP를 할 경우는 헤드속도는 저속으로 하여야 양호한 연마특성을 얻을 수 있었다.

  • PDF

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

Photoluminescent Graphene Oxide Microarray for Multiplex Heavy Metal Ion Analysis

  • Liu, Fei;Ha, Hyun Dong;Han, Dong Ju;Park, Min Su;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.2-281.2
    • /
    • 2013
  • Since heavy metal ions included in water or food resources have critical effects on human health, highly sensitive, rapid and selective analysis for heavy metal detection has been extensively explored by means of electrochemical, optical and colorimetric methods. For example, quantum dots (QDs), such as semiconductor QDs, have received enormous attention due to extraordinary optical properties including high fluorescence intensity and its narrow emission peaks, and have been utilized for heavy metal ion detection. However, the semiconductor QDs have a drawback of serious toxicity derived from cadmium, lead and other lethal elements, thereby limiting its application in the environmental screening system. On the other hand, Graphene oxide (GO) has proven its superlative properties of biocompatibility, unique photoluminescence (PL), good quenching efficiency and facile surface modification. Recently, the size of GO was controlled to a few nanometers, enhancing its optical properties to be applied for biological or chemical sensors. Interestingly, the presence of various oxygenous functional groups of GO contributes to opening the band gap of graphene, resulting in a unique PL emission pattern, and the control of the sp2 domain in the sp3 matrix of GO can tune the PL intensity as well as the PL emission wavelength. Herein, we reported a photoluminescent GO array on which heavy metal ion-specific DNA aptamers were immobilized, and sensitive and multiplex heavy metal ion detection was performed utilizing fluorescence resonance energy transfer (FRET) between the photoluminescent monolayered GO and the captured metal ion.

  • PDF

Synthesis of CdS with Graphene by CBD(Chemical Bath Deposition) Method and Its Photocatalytic Activity

  • Pawar, R.C.;Lee, Jin-Yong;Kim, Eun-Jeong;Kim, Hyungsub;Lee, Caroline Sunyong
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.504-507
    • /
    • 2012
  • Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.

Effects of Aluminum Chloride Concentrations on Structural and Optical Properties of Al-doped ZnO Thin Films Prepared by the Sol-Gel Method (졸겔법으로 제작된 Al-doped ZnO 박막의 Aluminum Chloride 농도에 따른 구조적 및 광학적 특성)

  • Cho, Guan Sik;Kim, Min Su;Yim, Kwang Gug;Lee, Jaeyong;Leem, Jae-Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.847-854
    • /
    • 2012
  • Al-doped ZnO (AZO) thin films were grown on quartz substrates by the sol-gel method. The effects of the Al mole fraction on the structural and optical properties of the AZO thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-VIS spectroscopy. The particle size of the AZO thin films decreased with an increase in Al concentrations. The optical parameters, the optical band gap, absorption coefficient, refractive index, dispersion parameter, and optical conductivity, were studied in order to investigate the effects of Al concentration on the optical properties of AZO thin films. The dispersion energy, single-oscillator energy, average oscillator wavelength, average oscillator strength, and refractive index at an infinite wavelength of the AZO thin films were affected by the Al incorporation. The optical conductivity of the AZO thin films also increased with increasing photon energy.

Effect of Annealing Process Pressure Over Atmospheric Pressure on Cu2ZnSn(S,Se)4 Thin Film Growth (대기압 이상의 열처리 공정압력이 Cu2ZnSn(S,Se)4(CZTSSe) 박막 성장에 미치는 영향)

  • Lee, Byeong Hoon;Yoo, Hyesun;Jang, Jun Sung;Lee, InJae;Kim, Jihun;Jo, Eunae;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.553-558
    • /
    • 2019
  • $Cu_2ZnSn(S,Se)_4(CZTSSe)$ thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic $H_2Se$ and/or $H_2S$ gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage($V_{OC}$) and $36.98mA/cm^2$ for short circuit current density($J_{SC}$), under a highest process pressure of 800 Torr.