• Title/Summary/Keyword: band-gap engineering

Search Result 735, Processing Time 0.027 seconds

Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties

  • Chuan, M.W.;Wong, K.L.;Hamzah, A.;Rusli, S.;Alias, N.E.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Silicene is a two-dimensional (2D) derivative of silicon (Si) arranged in honeycomb lattice. It is predicted to be compatible with the present fabrication technology. However, its gapless properties (neglecting the spin-orbiting effect) hinders its application as digital switching devices. Thus, a suitable band gap engineering technique is required. In the present work, the band structure and density of states of uniformly doped silicene are obtained using the nearest neighbour tight-binding (NNTB) model. The results show that uniform substitutional doping using aluminium (Al) has successfully induced band gap in silicene. The band structures of the presented model are in good agreement with published results in terms of the valence band and conduction band. The band gap values extracted from the presented models are 0.39 eV and 0.78 eV for uniformly doped silicene with Al at the doping concentration of 12.5% and 25% respectively. The results show that the engineered band gap values are within the range for electronic switching applications. The conclusions of this study envisage that the uniformly doped silicene with Al can be further explored and applied in the future nanoelectronic devices.

Wide Band-gap FETs for High Power Amplifiers

  • Burm, Jin-Wook;Kim, Jae-Kwon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.175-181
    • /
    • 2006
  • Wide band-gap semiconductor electron devices have made great progresses to produce very high power amplifiers for various wireless standards. The advantages of wide band-gap electronic devices and their progresses are summarized in this paper.

Theoretical analysis of transient wave propagation in the band gap of phononic system

  • Lin, Yi-Hsien;Ma, Chien-Ching
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.15-29
    • /
    • 2013
  • Phononic system composed of periodical elastic structures exhibit band gap phenomenon, and all elastic wave cannot propagate within the band gap. In this article, we consider one-dimensional binary materials which are periodically arranged as a 20-layered medium instead of infinite layered system for phononic system. The layered medium with finite dimension is subjected to a uniformly distributed sinusoidal loading at the upper surface, and the bottom surface is assumed to be traction free. The transient wave propagation in the 20-layered medium is analyzed by Laplace transform technique. The analytical solutions are presented in the transform domain and the numerical Laplace inversion (Durbin's formula) is performed to obtain the transient response in time domain. The numerical results show that when a sinusoidal loading with a specific frequency within band gap is applied, stress response will be significantly decayed if the receiver is away from the source. However, when a sinusoidal force with frequency is out of band gap, the attenuation of the stress response is not obvious as that in the band gap.

Radial deformation and band-gap modulation of pressurized carbon nanotubes

  • Taira, Hisao;Shima, Hiroyuki;Umeno, Yoshitaka;Sato, Motohiro
    • Coupled systems mechanics
    • /
    • v.2 no.2
    • /
    • pp.147-157
    • /
    • 2013
  • We numerically investigate the electronic band structure of carbon nanotubes (CNTs) under radial corrugation. Hydrostatic pressure application to CNTs leads to a circumferential wave-like deformation of their initially circular cross-sections, called radial corrugations. Tight-binding calculation was performed to determine the band gap energy as a function of the amplitude of the radial corrugation. We found that the band gap increased with increasing radial corrugation amplitude; then, the gap started to decline at a critical amplitude and finally vanished. This non-monotonic gap variation indicated the metal-semiconductor-metal transition of CNTs with increasing corrugation amplitude. Our results provide a better insight into the structure-property relation of CNTs, thus advancing the CNT-based device development.

Synthesis and Band Gap Analysis of Meso-Arylporphyrins Containing Exclusively Electron Donating or Withdrawing Groups

  • Min Su Kang;Kwang-Jin Hwang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.3
    • /
    • pp.175-180
    • /
    • 2023
  • Tetra-aryl substituted A4-type porphyrins (TP, TD, TA) and trans-A2B2 porphyrins (DDP1, AAP1) with electron-donating or withdrawing groups were synthesized. The band gap energy of those porphyrins was calculated from their UV-Vis spectra and CV data. With an electron-withdrawing group, the band gap energy of porphyrin TA increased via the LUMO energy up. Meanwhile, the introduction of an electron-donating group decreased the band gap of porphyrin by HOMO level up as as in the case of porphyrin TD. The band gap (2.19-2.28 eV) of metalloporphyrin PP-Ni was greater than those (1.81-2.06 eV) of non-metalloporphyrins PP due to the LUMO level up.

Magneto-Optical Effect of One-Dimentional Magnetophotonic Crystal Utilizing the Second Photonic Band Gap

  • Uchida, H.;Tanizaki, K.;Khanikaev, A.B.;Fedyanin, A.A.;Lim, P.B.;Inoue, M.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.139-142
    • /
    • 2006
  • We fabricated new one-dimensional magnetophotonic crystal (1D-MPC) utilizing the second and third photonic band gaps where localized modes existed. Structure of the 1D-MPC was $(Ta_{2}O_{5}/SiO_{2})_{5}/Bi:YIG/(SiO_{2}/Ta_{2}O_{5})_{5}$ with optical thicknesses of 3$\lambda$ /4 for $Ta_{2}O_{5} and $SiO_2$ dielectric layers and $\lambda$ /2 for Bi:YIG defect layer, where $\lambda$ is a wavelength of a localized mode in the second photonic band gap. Faraday rotation at the localized mode in the second photonic band gap was enhanced, which was confirmed by calculation using 4${\times}$4 matrix method.

A Dual-Band Gap-Filler Antenna Design with a Phi-Shaped Slot

  • Park, Sang Yong;Park, Jong Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.111-114
    • /
    • 2015
  • In this paper, we have proposed dual-band Phi-shaped slot gap filler antenna for satellite internet service applications. Some properties of the antenna such as return loss, radiation pattern, and gain have been simulated and measured. The proposed antenna has a Phi-shaped slot on the circular patch and is fabricated on the TLX-9 substrate. The radius of the circular patch is 25 mm, and it has a coaxial feeding structure. The dual-band Phi-shaped slot gap filler antenna has high-gain, small-size, simple-structure, and good radiation patterns at each band. The operating frequency band can be tuned by adjusting the length AL and FL of the Phi-shaped slot.

Band Gap Energy of SrTiO3Thin Film Prepared by the Liquid Phase Deposition Method

  • Gao, Yanfeng;Masuda, Yoshitake;Koumoto, Kunihito
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.213-218
    • /
    • 2003
  • Band gap energies of SrTiO$_3$(STO) thin film on glass substrates were studied in terms of annealing temperature. The STO thin film was fabricated by our newly developed method based on the combination of the Self-Assembled Monolayer(SAM) technique and the Liquid Phase Deposition(LPD) method. The as-deposited film demonstrated a direct band gap energy of about 3.65 eV, which further increased to 3.73 eV and 3.78 eV by annealing at 40$0^{\circ}C$ and 50$0^{\circ}C$, respectively. The band gap energy saturated at about 3.70 eV for the crystallized film which was obtained by annealing at 600-$700^{\circ}C$. The relatively large band gap energies of our crystallized films were due to the presence of minor amorphous phase, grain boundaries and oxygen vacancies generated by annealing in air.

Band Gap Energy Engineering of Electron Emission Layer of ac-PDPs

  • Yoon, Sang-Hoon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.262-264
    • /
    • 2009
  • Ternary oxides with controlled band gap energy and reduced reactivity against moisture and carbon dioxide gas were designed and studied as a potential material for protective layer of ac-PDPs. The results showed a significant reduction in firing voltage and improved environmental stability.

  • PDF

The effect of strain on the electronic properties of MoS2 monolayers

  • Park, Soon-Dong;Kim, Sung Youb
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • We utilize first-principles calculations within density-functional theory to investigate the possibility of strain engineering in the tuning of the band structure of two-dimensional $MoS_2$. We find that the band structure of $MoS_2$ monolayers transits from direct to indirect when mechanical strain is applied. In addition, we discuss the change in the band gap energy and the critical stains for the direct-to-indirect transition under various strains such as uniaxial, biaxial, and pure shear. Biaxial strain causes a larger change, and the pure shear stain causes a small change in the electronic band structure of the $MoS_2$ monolayer. We observe that the change in the interaction between molecular orbitals due to the mechanical strain alters the band gap type and energy.