• Title/Summary/Keyword: band power

Search Result 2,665, Processing Time 0.029 seconds

Genetic Polymorphisms of the Human Thyroid Peroxidase Gene Using Amplified Fragment Length Polymorphism: Application to the Determination of Paternity in a Korean Population. (한국인에서 중합효소연쇄반응을 이용한 Human Thyroid Peroxidase 유전자의 유전적 다형성에 관한 연구)

  • Kyung Ok Lee;Taek-Kyu Park;Moon-Ju Oh;Eun-Ha Kim;Young-Suk Park;Yoon Jung Kim;Kyu Pum Lee
    • Biomedical Science Letters
    • /
    • v.1 no.1
    • /
    • pp.9-18
    • /
    • 1995
  • Genetic polymorphisms due to variation in the number of tandem repeats of DNA sequences(VNTRs) provides a useful means for discrimination between individuals. Allele and genotype frequencies of the highly polymorphic Human Thyroid Peroxidase(TPO) gene were determined in Korean population samples by using PCR followed by polyacrylamide gel electrophoresis, a procedure called the amplified fragment length polymorphism(Amp-FLP) technique. In 123 unrelated Korean individuals 10 different alleles and 29 genotypes were observed. The TPO gene demonstrated a heterozygosity of 0.707 and the power of exclusion(POE) was 0.945. The probability of having the same DNA band within two unrelated individuals was 14.6$\times10^{-2}$. The distribution of observed genotypes conformed to Hardy-Weinberg equilibrium($x^2$=4.48, 0.05

  • PDF

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

Polarization Analysis of Ultra Low Frequency (ULF) Geomagnetic Data for Monitoring Earthquake-precusory Phenomenon in Korea (지진 전조현상 모니터링을 위한 ULF 대역 지자기장의 분극 분석)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Young-Gyun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Since the 1990's, a number of ULF geomagnetic disturbance associated with earthquake occurrences have actively been reported, and polarization analysis of geomagnetic fields becomes one of potential candidates to be capable of predicting short-term earthquake. This study develops the modified polarization analysis method based on the previous studies, and analyzes three-component geomagnetic fields obtained at Cheongyang geomagnetic observatory using the developed method. A daily polarization value (the ratio of spectral power of horizontal and vertical geomagnetic field) is calculated with a focus on the 0.01 Hz band, which is known to be the most sensitive to seismogenic ULF radiation. We analyze a total of 10 months of geomagnetic data obtained at Cheongyang observatory, and compare the polarization values with the Kp index and the earthquake occurred in the analysis period. The results show that there is little correlation between the temporal variations of polarization values and Kp index, but remarkable increases in polarization values are identified which are associated with two earthquakes. Comparison the polarization values obtained at Cheongyang and Kanoya observatory indicates that the increases of polarization values at Cheongyang might be due to not global geomagnetic induction but the locally occurred earthquakes. Furthermore, these features are clearly shown in normalized polarization values, which take account in the statistical characteristics of each geomagnetic field. On the basis of these results, polarization analysis can be used as promising tool for monitoring the earthquake-precursory phenomenon.

Developement of Planar Active Array Antenna System for Radar (평면형 능동 위상 배열 레이더용 안테나 시스템 개발)

  • Chon, Sang-Mi;Na, Hyung-Gi;Kim, Soo-Bum;Lee, Jeong-Won;Kim, Dong-Yoon;Kim, Seon-Joo;Ahn, Chang-Soo;Lee, Chang-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1340-1350
    • /
    • 2009
  • The design and implementation of planar Active Phased Array Antenna System are described in this paper. This Antenna system operates at X-band with its bandwidth 10 % and dual polarization is realized using dual slot feeding microstrip patch antenna and SPDT(Single Pole Double Through) switch. Array Structure is $16\times16$ triangular lattice structure and each array is composed of TR(Transmit & Receive) module with more than 40 dBm power. Each TR module includes digital attenuator and phase shifter so that antenna beam can be electronically steered over a scan angle$({\pm}60^{\circ})$. Measurement of antenna pattern is conducted using a near field chamber and the results coincide with the expected beam pattern. From these results, it can be convinced that this antenna can be used with control of beam steering and beam shaping.

60 GHz WPAN LNA and Mixer Using 90 nm CMOS Process (90 nm CMOS 공정을 이용한 60 GHz WPAN용 저잡음 증폭기와 하향 주파수 혼합기)

  • Kim, Bong-Su;Kang, Min-Soo;Byun, Woo-Jin;Kim, Kwang-Seon;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • In this paper, the design and implementation of LNA and down-mixer using 90 nm CMOS process are presented for 60 GHz band WPAN receiver. In order to extract characteristics of the transistor used to design each elements under the optimum bias conditions, the S-parameter of the manufactured cascode topology was measured and the effect of the RF pad was removed. Measured results of 3-stages cascode type LNA the gain of 25 dB and noise figure of 7 dB. Balanced type down-mixer with a balun at LO input port shows the conversion gain of 12.5 dB within IF frequency($8.5{\sim}11.5\;GHz$) and input PldB of -7 dBm. The size and power consumption of LNA and down-mixer are $0.8{\times}0.6\;mm^2$, 43 mW and $0.85{\times}0.85\;mm^2$, 1.2 mW, respectively.

Implementation of A Millimeter-Wave Multiflare-Angle Horn Antenna (밀리미터파 다중개구각 혼안테나 구현)

  • Oh, Kyung-Hyun;Kim, Ji-Hyung;Yang, Seung-Sik;Shin, Sang-Jin;Cho, Young-Ho;Lee, Byung-Ryul;Ahn, Bierng-Chearl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.36-41
    • /
    • 2018
  • This paper presents an implementation of a millimeter-wave(W band) multiflare-angle horn antenna. The proposed antenna is a multimode dual-polarized square horn having equal E- and H-plane beamwidths and consists of a multimode generating section, a four-square-waveguide exciter, orthomode transducers, and power combiners for the sum pattern formation. The antenna structure has been designed to allow for easy fabrication and the designed antenna has been fabricated to a precision of ${\pm}0.02mm$ by layer-by-layer machining and diffusion bonding. The input reflection coefficient and the radiation pattern of the fabricated antenna have been measured using a network analyzer and a far-field test facility. Measurements show that the proposed antenna has 17.7~18.3 dBi gain, $25.2{\sim}28.5^{\circ}$ beamwidth, and an input VSWR between 1.02~1.75, within ${\pm}0.5GHz$ from the center frequency.

Flexible InGaP/GaAs Double-Junction Solar Cells Transferred onto Thin Metal Film (InGaP/GaAs 이중접합 기반의 고효율 플렉시블 태양전지 제조기술 연구)

  • Moon, Seungpil;Kim, Youngjo;Kim, Kangho;Kim, Chang Zoo;Jung, Sang Hyun;Shin, Hyun-Beom;Park, Kyung Ho;Park, Won-Kyu;Ahn, Yeon-Shik;Kang, Ho Kwan
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2016
  • III-V compound semiconductor based thin film solar cells promise relatively higher power conversion efficiencies and better device reliability. In general, the thin film III-V solar cells are fabricated by an epitaxial lift-off process, which requires an $Al_xGa_{1-x}As$ ($x{\geq}0.8$) sacrificial layer and an inverted solar cell structure. However, the device performance of the inversely grown solar cell could be degraded due to the different internal diffusion conditions. In this study, InGaP/GaAs double-junction solar cells are inversely grown by MOCVD on GaAs (100) substrates. The thickness of the GaAs base layer is reduced to minimize the thermal budget during the growth. A wide band gap p-AlGaAs/n-InGaP tunnel junction structure is employed to connect the two subcells with minimal electrical loss. The solar cell structures are transferred on to thin metal films formed by Au electroplating. An AlAs layer with a thickness of 20 nm is used as a sacrificial layer, which is removed by a HF:Acetone (1:1) solution during the epitaxial lift-off process. As a result, the flexible InGaP/GaAs solar cell was fabricated successfully with an efficiency of 27.79% under AM1.5G illumination. The efficiency was kept at almost the same value after bending tests of 1,000 cycles with a radius of curvature of 10 mm.

Design of the Microwave Oscillator with the C type DGS Resonator (C형태의 DGS 공진기를 이용한 초고주파 발진기 설계)

  • Kim, Gi-Rae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.243-248
    • /
    • 2015
  • Since phase noise is one of the most important parameters in the design of microwave oscillators, several methods have been proposed to reduce the phase noise. These methods have focused on improving the quality factor of resonators, which result in low phase noise oscillators. Dielectric resonators have been widely used for low phase noise in microwave oscillators due to their high quality factor. However this cannot be used in MMIC oscillators because they have a 3D structure. In this paper, to overcome this problem a novel resonator using open ring type DGS is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator, and oscillator for 5.8GHz band is designed using proposed DGS resonator. The open ring type DGS resonator is composed of DGS cell etched on ground plane under $50{\Omega}$ microstrip line. At the fundamental frequency of 5.8GHz, 6.1dBm output power and -82.7 dBc@100kHz phase noise have been measured for oscillator with ring type DGS resonator. The phase noise characteristics of oscillator is improved about 96.5dB compared to one using the general ${\lambda}/4$ microstrip resonator.

Endurance Capacity of the Biceps Brachii Muscle Using the High-to-Low Ratio between Two Signal Spectral Moments of Surface EMG Signals during Isotonic Contractions

  • Lee, Sang-Sik;Jang, Jee-Hun;Cho, Chang-Ok;Kim, Dong-Jun;Moon, Gun-Pil;Kim, Buom;Choi, Ahn-Ryul;Lee, Ki-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1641-1648
    • /
    • 2017
  • Many researchers had examined the validity of using the high-to-low ratio between two fixed frequency band amplitudes (H/L-FFB) from the surface electromyography of a face and body as the first spectral index to assess muscle fatigue. Despite these studies, the disadvantage of this index is the lack of a criterion for choosing the optimal border frequency. We tested the potential of using the high-to-low ratio between two signal spectral moments (H/L-SSM), without fixed border frequencies, to evaluate muscle fatigue and predict endurance time ($T_{end}$), which was determined when the subject was exhausted and could no longer follow the fixed contraction cycle. Ten healthy participants performed five sets of voluntary isotonic contractions until they could only produce 10% and 20% of their maximum voluntary contraction (MVC). The $T_{end}$ values for all participants were $138{\pm}35s$ at 10% MVC and $69{\pm}20s$ at 20% MVC. Changes in conventional spectral indices, such as the mean power frequency (MPF), Dimitrov spectral index (DSI), H/L-FFB, and H/L-SSM, were extracted from surface EMG signals and were monitored using the initial slope computed every 10% of $T_{end}$ as a statistical indicator and compared as a predictor of $T_{end}$. Significant correlations were found between $T_{end}$ and the initial H/L-SSM slope as computed over 30% of $T_{end}$. In conclusion, initial H/L-SSM slope can be used to describe changes in the spectral content of surface EMG signals and can be employed as a good predictor of $T_{end}$ compared to that of conventional spectral indices.

Implementation of a Sensor Node with Convolutional Channel Coding Capability (컨벌루션 채널코딩 기능의 센서노드 구현)

  • Jin, Young Suk;Moon, Byung Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2014
  • Sensor nodes are used for monitoring and collecting the environmental data via wireless sensor network. The wireless sensor network with various sensor nodes draws attention as a key technology in ubiquitous computing. Sensor nodes has very small memory capacity and limited power resource. Thus, it is essential to have energy efficient strategy for the sensor nodes. Since the sensor nodes are operating on the same frequency bands with ISM frequency bands, the interference by the devices operating on the ISM band degrades the quality of communication integrity. In this paper, the convolutional code is proposed instead of ARQ for the error control for the sensor network. The proposed convolutional code was implemented and the BER performance is measured. For the fixed transmitting powers of -19.2 dBm and -25dBm, the BER with various communication distances are measured. The packet loss rate and the retransmission rate are calculated from the measured BER. It is shown that the porposed method obtained about 9~12% and 12-19% reduction in retransmission rate for -19.2 dBm and -25 dBm respectively.