• Title/Summary/Keyword: ballast tank

Search Result 71, Processing Time 0.017 seconds

A Study on the Leading/Unloading Time Prediction of the Ballast Tank (밸러스트 탱크의 급수/배수 시간 예측에 관한 연구)

  • Kim H. I.;Kim M. U.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.33-36
    • /
    • 2004
  • The ballast tank of a ship is a system that realizes the required shipping condition and controls the draft of a ship. The loading/unloading of the ballast tank is frequently operated during navigation and the accurate prediction of the loading/unloading time is very important. A numerical algorithm that predicts the loading/unloading time of the ballast tank has been developed and applied to the prediction of the loading/unloading time of the ballast tank with various piping systems. This algorithm can be useful in optimizing the ballast tank system in early design stage.

  • PDF

Filtering System Design and Structural Analysis for Intake Water of Ship's Ballast Tank (선박 밸러스트 탱크 유입수 필터링 시스템 설계 및 구조해석)

  • Yun, Sang-Kook;Park, Byung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.282-287
    • /
    • 2009
  • As current international guideline and IMO regulation give severe restrictions for ships to manage ballast water to reduce unintentional organism transfers, several ballast water treatment systems recently have been being developed together with filtration. That is because discharging ballast water from ships causes many pollutions by foreign biological invasive species. The primary treatment system being considered in this study was based on fine screen filtration technology applied to ballast water filter in ballast tank in order to reduce the load of ballast water treatment system. New ballast water filtration system was invented and analysed. The structural stress and strain analysis for ballast filtration systems which are current and invented filters were carried out using UGS and Ansys. The results showed that the structure of current filtering module was not designed to meet the requirement of sea water filtration during ballasting operation. The studies also showed that the invented design of filtration system equipped with back washing and automatic scrapper for eliminating cake of bio-species might be a potentially effective technology for ballast water management of ship's ballast tank.

An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = Application to the ship's ballast tank

  • Kim, Do Kyun;Lim, Hui Ling;Cho, Nak-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.645-656
    • /
    • 2020
  • In this study (Part II), the empirical formulation of corrosion model of a ship's ballast tank was developed to predict nonlinear time-dependent corrosion wastage based on the advanced data processing technique proposed by Part I. The detail on how to propose generalised mathematical formulation of corrosion model was precisely documented in the previous paper (Part I). The statistical scatter of corrosion data at any exposure time was investigated by the refined method and formulated based on a 2-parameter Weibull distribution which selected the best fit PDF. Throughout the nine (9) steps, empirical formulation of the ship's seawater ballast tank was successfully proposed and four (4) key step results were also obtained. The proposed method in Part I was verified and confirmed by this application of seawater ballast tank, thus making it possible to predict accurate behaviours of nonlinear timedependent corrosion. Developed procedures and obtained corrosion damage model for ship's seawater ballast tank can be used for development of engineering software.

Numerical Investigation on Freezing in Ballast Tank of Ship Navigating in Ice-bound Sea

  • Kang, Ho-Keun;Kim, Ki-Pyoung;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • For vessels operating in the cold climate regions, the ballast water inside or hopper tanks above the waterline may be frozen, starting at the top of the tank and at the side walls. Therefore, countermeasures against freeze-up of the ballast tank such as air-bubbling system, hot steam injecting system, heating coil system and water circulating system are taken to prevent freeze-up phenomenon; however, there are no rigorous investigations of anti-freezing to examine the effectiveness and validity of systems against freeze-up of the ballast tank, in which the temperatures are about $-25^{\circ}C$ (ambient air temperature) and $0^{\circ}C$ (sea water), respectively. In this paper, to ensure reasonable specifications for cold regions if the measures from the above-mentioned systems against freeze-up are effective, the phenomenon of ballast tank freeze-up is simulated and discussed in low temperature conditions. With the results using the commercial CFD code, CFX 14, the most cost-effective solution is conducted to prevent being frozen along the outer surface.

Optimal Design of Mud Flushing System in Ballast tank of LNG Carrier (LNG선 Ballast Tank Mud Flushing System의 최적설계)

  • Park, Sang Hyeop;Song, Yoo Seok;Kim, Young Bok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.85-92
    • /
    • 2016
  • During ballast of a LNG carrier, the mud at the sea floor can enter the tanks together with the ballast water if the LNG terminal is located at shallow water region. In order to remove the mud deposited on the tank floor during deballasting, the mud flushing system in the ballast tanks is applied. In this study, various analyses to conform the efficiency in the mud removal are performed. In order to design the mud flushing system, the particle size of the mud is measured by particle size analyzer. Flushing performance is evaluated by numerical analysis. From the results of numerical analysis including flow field and piping system network, the optimized flushing system is determined.

Optimal Ballasting in the Preliminary Ship Design Stage (초기설계 단계에서의 최적 발라스트 용량에 관한 연구)

  • Gang, Won-Su
    • 한국기계연구소 소보
    • /
    • s.15
    • /
    • pp.117-125
    • /
    • 1985
  • It is usual practice to ballast a sip to maintain requires operational safety at sea. However, excessive ballasting may reduce the operational economy of a ship. Therefore, The determination of the optimal location and quantity of ballast water is one of the important works at the preliminary design stage. To provide a convenient tool to ship designers the program for the determination of the optimal location and program the effect of the change of ballast water quantity in each tank on some characteristics of a ship, such as trim, initial stability and heel, is investigated and the minimum quantity of ballast water for each tank which satisfies the operational safety requirements is calculated.

  • PDF

Numerical Analysis on Freezing in the Ship Voyaging in Polar Regions

  • Kang, Ho-Keun;Kim, Ki-Pyoung;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.30-37
    • /
    • 2013
  • For vessels operating in the cold climate regions, the ballast water inside or hopper tanks above the waterline may be frozen, starting at the top of the tank and at the side walls. Therefore, countermeasures against freeze-up of the ballast tank such as air-bubbling system, hot steam injecting system, heating coil system and water circulating system are taken to prevent freeze-up phenomenon; however, there are no rigorous investigations of anti-freezing to examine the effectiveness and validity of systems against freeze-up of the ballast tank, in which the temperatures are about -$25^{\circ}C$ (ambient air temperature) and $0^{\circ}C$ (sea water), respectively. In this paper, to ensure reasonable specifications for cold regions if the measures from the above-mentioned systems against freeze-up are effective, the phenomenon of ballast tank freeze-up is simulated and discussed in low temperature conditions. With the results using the commercial CFD code, CFX 14, the most cost-effective solution is conducted to prevent being frozen along the outer surface.

Transient Current Control of Two-Stage Electronics Ballast for HID Lamps (HID 램프용 Two-Stage 전자식 안정기의 과도 전류 제어)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

A Study on Anti-Icing Technique for Ballast Water of Icebreaking Vessels Operating in Ice-Covered Water (극지운항용 빙해선박의 밸러스트 수 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Lee, Chun-Ju;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • When freezing is present on ballast water, it can impose additional loads on the hull and effect on stabilization of ship. The anti-icing techniques of ballast water, therefore, are key criteria for ship safety. The existing anti-icing techniques of ballast tank are hull heating, water circulation and air bubble system etc. In this research, anti-icing performance tests for the ballast water using micro-bubble system and sea water circulation system have been carried out at two temperature conditions($-10^{\circ}C$ and $-25^{\circ}C$). Ambient temperature, sea water temperature and temperature of the inner parts of the ballast tank are measured and also ballast water conditions are checked during the model test. The applied anti-icing techniques of ballast water, such as micro-bubble system and sea water circulation system show good performance in the low temperature conditions.