• Title/Summary/Keyword: ball shear test

Search Result 60, Processing Time 0.02 seconds

Regulation in Shear Test Method for BGA of Flip-chip Packages (플립칩 패키지 BGA의 전단강도 시험법 표준화)

  • Ahn, Jee-Hyuk;Kim, Kwang-Seok;Lee, Young-Chul;Kim, Yong-Il;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • We reported the methodology for the shear test which is one of the evaluation procedure for mechanical reliability of flip-chip package. The shear speed and the tip height are found to be two significant experimental parameters in the shear test. We investigated how these two parameters have an influence on the results, the shear strength and failure mode. In order to prove these experimental inconsistency, simulation using finite element analysis was also conducted to calculate the shear strength and to figure out the distribution of plastic energy inside of the solder ball. The shear strength decreased while the tip height increased or the shear speed decreased. A variation in shear strength due to inconsistent shear conditions made confusion on analyzing experimental results. As a result, it was strongly needed to standardize the shear test method.

Effect of Shearing Speed and UBMs on High Speed Shear Properties of Sn3.0Ag0.5Cu Solder Ball (Sn3.0Ag0.5Cu 솔더 볼의 고속 전단특성에 미치는전단속도 및 UBM층의 영향)

  • Jung, Do-Hyun;Lee, Wang-Gu;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.635-641
    • /
    • 2011
  • The effect of high shear speed on shear force, shear energy and fracture surface was investigated for the solder joint of a $Sn-_{3.0}Ag-_{0.5}Cu$ ball. For both ENIG and OSP pads, the shear force increased with an increase in shearing speed to 0.3 m/s. However, for an ENEPIG pad, the shear force increased with an increase in shear speed to 0.6 m/s and kept almost constant afterward. The shear energy decreased with an increase in shearing speed for ENIG and OSP pads. For the ENEPIG pad, however, the shear energy almost remained constant in a shearing speed range 0.3-3.0 m/s. The fracture mode analysis revealed that the amount of brittle fracture for the ENIG and the OSP pads increased with shearing speed, and a complete brittle fracture appeared at 1.0 m/s for ENIG and 2.0 m/s for OSP. However, the ENEPIG pad showed only a ductile fracture until 0.25 m/s, and a full brittle fracture didn't occur up to 3.0 m/s. The fracture mode matched well with the shear energy. The results from the high speed shear test of SAC305 were similar to those of SAC105.

A Study on the Ball-off of Via Balls Bonded by Solder Paste (Solder Paste로 접합된 비아볼의 Ball-off에 관한 연구)

  • Kim, Kyoung-Su;Kim, Jin-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2004
  • Package reliability test was conducted to investigate the effect of solder paste composition at BGA Package. It was found that the shape and size of the phase form are affected by the processing parameters. The material have used to fill in the via was Sn/36Pb/2Ag and Sn/0.75Cu type solder paste. Sn/36Pb/2Ag and Sn/0.75Cu paste were fabricated on Tape-BGA substrates by screen printing process, and via ball mount data were characterized with variations of dwell time of 85 seconds at reflow peak temperature at 22$0^{\circ}C$ or 24$0^{\circ}C$. The test condition was MRT 30 $^{\circ}C$/60 %RH/96 HR. Failures formed of a ball-off in solder paste process were observed by using a Optical Microscope and SEM(Scanning Electron Microscope). It was concluded that intermetallic layer growth played important roles in increasing solder fatigue strength for addition of Ag composition. The degradation of shear strength of solder composition is discussed.

Evaluation and Test Method Characterization for Mechanical and Electrical Properties in BGA Package (BGA 패키지의 기계적${\cdot}$전기적 특성 평가 및 평가법)

  • Koo Ja-Myeong;Kim Jong-Woong;Kim Dae-Gon;Yoon Jeong-Won;Lee Chang-Yong;Jung Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.289-299
    • /
    • 2005
  • The ball shear force was investigated in terms of test parameters, i.e. displacement rate and probe height, with an experimental and non-linear finite element analysis for evaluation of the solder joint integrity in area array packages. The increase in the displacement rate and the decrease in the probe height led to the increase in the shear force. Excessive probe height could cause some detrimental effects on the test results such as unexpected high standard deviation and probe sliding from the solder ball surface. The low shear height conditions were favorable for assessing the mechanical integrity of the solder joints. The mechanical and electrical properties of the Sn-37Pb/Cu and Sn-3.5Ag/Cu BGA solder joints were also investigated with the number of reflows. The total thickness of the intermetallic compound (IMC) layers, consisting of Cu6Sn5 and Cu3Sn, was increased as a function of cubic root of reflow time. The shear force was increased up to 3 or 4 reflows, and then was decreased with the number of reflows. The fracture occurred along the bulk solder, in irrespective of the number of reflows. The electrical resistivity was increased with increasing the number of reflows.

  • PDF

Applicability of Particle Crushing Model by Using PFC (PFC를 이용한 입자 파쇄 모델의 적용성 연구)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • Granular soils having a large particle size have been used as a filling material in the construction of foundation, harbor, dam, and so on. Consequently, the shear behavior of this granular soil plays a key role in respect of stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause a disturbance of ground characteristics and consequently induce issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM (Discrete Element Method)-based software program PFC2D (Particle Flow Code). By dividing soil particle bonding model into crushing model and noncrushing model, total four particle bonding models were simulated and their results were compared. Noncrushing model included one ball model and clump model, and crushing model included cluster model and Lobo-crushing model. The combinations of soil particle followed the research results of Lobo-Guerrero and Vallejo (2005) which were composed of eight circles. The results showed that the friction angle was in order of clump model > cluster model > one ball model. The particle bonding model compared to one ball model and noncrushing model compared to crushing model showed higher shear strength. It was also concluded that the model suggested by Lobo-Guerrero and Vallejo (2005) is not appropriate to simulate the soil particle crushing.

  • PDF

Generation of Mini-compacted Thin Film Hybrid Package by Ceramic Ball Grid Array (CBGA를 통한 초소형/박형 박막하이브리드 패키지 구현)

  • 김상희
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.2 no.1
    • /
    • pp.59-68
    • /
    • 1995
  • 박막제조 기술 및 BGA패캐지를 이용하여 Wellcom 2000 system 소요 OCU Board 의 집적화를 구현하였다. 기존 PCB에 실장되는 소자 일부를 2 Channel BGA 패캐지로 모 듈화한 결과 약 1/6로 소형화시킬수 있었으며 8 Channel의 모율화는 현재 진행중인 다층 구조의 제조 기술 개발과 아울러 BGA 패캐지로 실현이 가능하며 1/10로집접화할수 있음을 알수 있었다. 또한 PCB위에 Bare Chip을 실장하여 Wire Bonding 한 COB를 구현하여 CBGGA의 PCB실장과 함께한 모듈을 형성해 보았다. CBGA패캐지에 Ball Shear Test, In Circuit Test 온도 환경주기시험(TCT) 진동시험을 통하여 신뢰성을 입증하였다. 이때 CBGA의 Coplanarity(3.2%) 증진을 위하여 Ceramic Pad에 선택적인 도금 방식을 개발적용 하였다.

Development of Biaxial Tension & Shear Tester using Stepper Motor with Harmonic Driver (감속 스텝모터를 이용한 2축 인장·전단 시험기의 개발)

  • Choi, Byung-Sun;Bae, Won-Ho;Chai, Young-Suck
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.379-386
    • /
    • 2001
  • The lower toughness or brittle materials for mechanical test lead to the additional requirement that applied displacements be controlled with high resolution. Biaxial tension and shear tester using stepper motor with harmonic driver is shown. The device had to be high resolution so that the crack initiation process of slow extension and steady growth could be examined, Grip plates were connected to a linear bearing and actuator. The actuators consisted of stepper motors with harmonic driver connected to pre-loaded ball screw and nut assemblies. The encoders and motor controllers were connected to a personal computer so that arbitrary displacements histories could he prescribed in normal and tangential directions. The linear bearings were used to react loads perpendicular to their axes while allowing low friction, parallel movement of the attached grips. Load cells measured the reactions normal and tangential. the loads measured the reactions were recorded by the computer.

  • PDF

Effect of Multiple Reflows on Mechanical and Electrical Properties of ENIG/Sn-3.5Ag/ENIG Ball Grid Array (BGA) Solder Joint (리플로우 횟수가 ENIG/Sn-3.5Ag/ENIG BGA 솔더 조인트의 기계적, 전기적 특성에 미치는 영향)

  • Sung, Ji-Yoon;Pyo, Sung-Eun;Koo, Ja-Myeong;Yoon, Jeong-Won;Noh, Bo-In;Won, Sung-Ho;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • In this study, solder joints were made with Sn-3.5Ag (wt%) solder ball. Electroless nickel / immersion gold (ENIG) printed circuit board (PCB) substrates were employed in this work. The mechanical and electrical properties were measured as a function of the number of reflow. Die shear strength was measured with increasing reflow number. Until the forth or fifth reflow, shear force increased and after the fifth reflow the shear force of die decreased. The electrical resistivity of solder joint linearly increased with increasing reflow number.

  • PDF

A Study on Characteristics of Sn-37Pb and Sn-4.0Ag-0.5Cu Solder Joints as Various A:V Ratio (A:V Ratio 변화에 따른 Sn-37Pb, Sn-4.0Ag-0.5Cu Solder 접합부의 특성 연구)

  • Han, Hyun-Joo;Lim, Seok-Jun;Moon, Jung-Tak;Lee, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.67-73
    • /
    • 2001
  • To investigate the relationships of solder joint characteristics with solder composition and A:V ratio (solder volume per pad area), Sn-37Pb and Sn-4.0Ag-0.5Cu solder balls with 330, 400, 450 and $457{\mu}{\textrm}{m}$ size were reflowed on same substrate. Sn-37Pb and Sn-4.0Ag-0.5Cu was reflowed at $220^{\circ}C$ and $240^{\circ}C$ respectively by IR-type soldering machine. As a result of reflowed solder- ball diameter(D) and height(H) measurement, D/H was decreased with solder ball size increment in range of 330~450 ${\mu}{\textrm}{m}$. But, D/H was increased in the solder joint for 457 ${\mu}{\textrm}{m}$ size, it was caused possibly by decrement of solder ball height increment compared with solder volume increment. As a result of shear and pull test, joint strength with A:V ratio was high. Joint strength of Sn-4.0Ag-0.5Cu was higher than Sn-37Pb. However, Sn-37Pb had more stable solder joint of small standard deviation. A thick and clean scallop type Ni-Cu-Sn intermetallic compound layer was formed in high A:V ratio and Sn-4.0Ag-0.5Cu solder joint interface.

  • PDF

Development of a Miniature Pendular Type Impact Testing Machine Using a Magnetic Powder Brake (마그네틱 파우더 브레이크를 이용한 소형 진자형 충격시험기 개발)

  • You, In-Dong;Lee, Man-Suk;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.140-146
    • /
    • 2011
  • A miniature pendular type impact testing machine was designed and developed, adopting a magnetic powder brake in order to investigate tensile and shear behavior of a small solder ball at high speed. In this testing system, the potential energy of the pendulum is transferred into the impact energy during its drop. Then, the impact energy is transmitted through the striker which is connected to the push rods to push the specimen for tensile loading. The tensile behavior of lead-free solder ball in diameter of 760 ${\mu}m$ was successfully investigated in a speed range of 0.15 m/s~1.25 m/s using this designed device. The maximum tensile strength of the solder joint decreases with the loading speed in the testing condition. The maximum tensile strength of the joint was 56 MPa in the low speed region.