DOI QR코드

DOI QR Code

Effect of Shearing Speed and UBMs on High Speed Shear Properties of Sn3.0Ag0.5Cu Solder Ball

Sn3.0Ag0.5Cu 솔더 볼의 고속 전단특성에 미치는전단속도 및 UBM층의 영향

  • Jung, Do-Hyun (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Wang-Gu (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul)
  • 정도현 (서울시립대학교 신소재공학과) ;
  • 이왕구 (서울시립대학교 신소재공학과) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Received : 2011.03.30
  • Published : 2011.08.25

Abstract

The effect of high shear speed on shear force, shear energy and fracture surface was investigated for the solder joint of a $Sn-_{3.0}Ag-_{0.5}Cu$ ball. For both ENIG and OSP pads, the shear force increased with an increase in shearing speed to 0.3 m/s. However, for an ENEPIG pad, the shear force increased with an increase in shear speed to 0.6 m/s and kept almost constant afterward. The shear energy decreased with an increase in shearing speed for ENIG and OSP pads. For the ENEPIG pad, however, the shear energy almost remained constant in a shearing speed range 0.3-3.0 m/s. The fracture mode analysis revealed that the amount of brittle fracture for the ENIG and the OSP pads increased with shearing speed, and a complete brittle fracture appeared at 1.0 m/s for ENIG and 2.0 m/s for OSP. However, the ENEPIG pad showed only a ductile fracture until 0.25 m/s, and a full brittle fracture didn't occur up to 3.0 m/s. The fracture mode matched well with the shear energy. The results from the high speed shear test of SAC305 were similar to those of SAC105.

Keywords

Acknowledgement

Supported by : 지식경제부, 서울시

References

  1. I. N. Jang, J. H. Park, and Y. S. Ahn, J. Microelectron. Packag. Soc. 17, 55 (2010).
  2. W. S. Hong and C. M. Oh, Kor. J. Weld. and Join. 27, 10 (2009).
  3. Y. C. Lee, K. S. Kim, J. H. Ahn, J. W. Yoon, M. K. Ko, and S. B. Jung, Kor. J. Mat. Mater. 48, 1035 (2010). https://doi.org/10.3365/KJMM.2010.48.11.1035
  4. Y. L. Huang and K. L. Lin, J. Mater. Res. 23, 1057 (2008). https://doi.org/10.1557/jmr.2008.0129
  5. Y. Liu, C. Chuang, and K. Lin, J. Mater. Res. 19, 2471 (2004). https://doi.org/10.1557/JMR.2004.0310
  6. JESD22-B117A, JEDEC Solid State Tech. Association (2006).
  7. C. J. Zhan, C. C. Chuang, T. C. Chang, L. C. Shen, Int'l. Microsystems, Pack., Assembly and Circuits Tech., IMPACT 2007, 66 (2007).
  8. C. Yeh and Y. Lai, Microelectron. and Reliabil. 46, 885 (2006). https://doi.org/10.1016/j.microrel.2005.07.113
  9. T. A. Nguty and N. N. Ekere, Intl. Jour. of Microcircuits and Electronic Pack. 22, 327 (1999).
  10. J. Y. H. Chia, B. Cotterell, and T. C. Chai, Mater. Sci. Eng. A 417, 259 (2006).
  11. F. Song, S. W. R. Lee, K. Newman, B. Sykes, and S. Clark, Proc. 57th Compon. and Tech. Conf., p.364, IEEE, Reno, USA (2007).
  12. F. Song, S. W. R. Lee, K. Newman, B. Sykes, and S. Clark, Proc. 57th Compon. and Tech. Conf., p.1504, IEEE, Reno, USA (2007).
  13. Y. G. Lee, H. Y. Lee, J. T. Moon, J. H. Park, S. S. Han, and J. P. Jung, Kor. J. Met. Mater. 47, 580, (2009).
  14. D. Suh, D. Kim, P. Liu, H. Kim, J. Weninger , C. Kumara, A. Prasad, B. Grimsley, and H. Tejada, Mater. Sci. Eng. A 460, 595 (2007).
  15. W. G. Lee and J. P. Jung, Kor. J. Met. Mater. 49, 237 (2011). https://doi.org/10.3365/KJMM.2011.49.3.237
  16. C. H.Yu and K. S.Kim, J. Microelectron. & Pack. Soc. 10, 45 (2003).
  17. D. H. Lee, B. M. Chung, and J. Y. Huh, Kor. J. Met. Mater. 48, 1041 (2010). https://doi.org/10.3365/KJMM.2010.48.11.1041
  18. B. G. Milad and M. Orduz, J. Circuit World, 34, 4 (2008). https://doi.org/10.1108/03056120810918051