• Title/Summary/Keyword: baffles

Search Result 185, Processing Time 0.023 seconds

Study on Power Characteristics in the PEMFC Parallel Channel with Baffles through Numerical Analysis (전산해석을 통한 PEMFC 평행 유로에서 Baffle에 의한 출력특성 분석)

  • Kwon, Oh-Jung;Oh, Chang-Mook;Shin, Hee-Sun;Oh, Byeong Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.193-200
    • /
    • 2014
  • Research on flow channel designs of the separate plates is necessary to improve the PEMFC performance. On concerning the performance improvement of PEMFC, many recent studies have been made on the interdigitated flow channel using forced convection. In this paper, the interdigitated flow channel is similarly applied on the parallel flow channel with a baffle or baffles. Numerical analysis is performed by using a commercial multiphysics program, which is called COMSOL, on the parallel channel with the fully blocked baffle(FBB) and there are three variables, the position of baffle, flow direction and flow velocity. Each power of the variables is resulted from the fixed 0.5V, the voltage from 80 percents of the maximum power. Finally, based on the full factorial designs(FFD), one of the design of experiments(DOE), each factor which has several levels lead to the conclusion. The analysis of the main effects and interactions of the factors is useful to find the most influenced factor to improve the power.

Finite Element Analysis of Sloshing Eigen Behavior in Horizontal Baffled Fuel Tank (수평으로 놓인 배플형 연료탱크의 슬로싱 고유거동에 관한 유한요소 해석)

  • 조진래;하세윤;이홍우;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.619-628
    • /
    • 2002
  • This paper deals with the FE analysis for the free vibration of sloshing in horizontal cylindrical tank with baffles. We use Laplace equation based on potential theory as governing equation. This problem is solved by FEM using lineal isoparametric elements. We assume that the tank as well as baffles is rigid body and by separating nodes into two at the baffle location, baffle effect is obtained by separating nodes into two at the baffle location. For the calculation of natural frequencies and mode shapes, we introduce Lanczos transformation and Jacobi iteration methods. Numerical results of the first longitudinal and transverse modes, while comparing with literature cited, are very good. In order for the baffle effects on the free vibration of sloshing, various combinations of baffle parameters, which are location, inner diameter and number, are examined.

Characteristics of Water Separation for Oil-Water Mixture in a FWKO Vessel (FWKO 유수분리공정을 이용한 오일-물 혼합물의 분리특성)

  • Kwon, Soon-Chul;Park, Kun-YIk;Yoon, Sung-Min;Kim, Joo-Yeon;Park, Chan-Young;Bae, Wi-Sup;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.823-828
    • /
    • 2011
  • Characteristics of water separation in a FWKO(Free Water Knok Out) vessel was investigated to remove water from oil-water mixture. Decane, toluene, and asphalt were used as model oils. Preliminary experiments were carried out for decane in a prototype FWKO vessel. Based on the results of preliminary experiments, the prototype vessel was modified and its performance was evaluated by using toluene. The effects of experimental variables on the separation of oil-water mixture were evaluated in terms of separation efficiency. The experimental variables include water cut(water ratio), number of baffles, residence times, and operation temperatures. The optimum conditions of water separation were found to be 0.8 water cut, 3 baffles, 1,200 sec, and $45^{\circ}C$.

Numerical Analyses of Performance and Combustion in KSR-III Liquid Propellant Rocket Engine with Combustion Stabilization Device (연소 안정성 기구를 장착한 KSR-III 액체로켓 엔진의 성능 및 연소 해석)

  • Moon, Yoon-Wan
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.41-50
    • /
    • 2003
  • Numerical analysis was carried out to investigate performance and combustion characteristics of KSR-III liquid rocket engine with several types of baffle. To evaluate the change of performance and combustion characteristics with several types of baffle, the first numerical calculations were performed about baffle tab, radial blade baffle, and hub-and-spoke baffle. Then radial blade and hub-and-spoke baffle were determined to design two types of the KSR-III engine with baffles. Also to investigate the effect of injector arrangements and baffle positions, two types of radial blade baffle were calculated then numerical calculations were carried out with changing axial length of radial blade I, II and hub-and-spoke baffle. While axial length of baffle effected to performance very small, injector arrangement effected to performance largely through calculations of radial blade I, II. From the viewpoint of combustion instability, hub-and-spoke baffle controlled combustion instability effectively and there was the performance of hub-and-spoke baffle between radial blade I and II.

  • PDF

Computational Fluid Dynamics Study on Two-Dimensional Sloshing in Rectangular Tank (사각형 탱크 내에서의 2차원 슬로싱에 대한 전산유체 역학적 연구)

  • Kwack, Young-Kyun;Ko, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1142-1149
    • /
    • 2003
  • The present study describes a numerical analysis for simulation of the sloshing of flows with free-surface which contained in a rectangular tank moving in harmonic or pitching motion. The VOF function, representing the volume fraction of a cell occupied by the fluid, is calculated for each cells, which gives the location of the free-surface filling any some fraction of cells with fluid. The time-dependent changes of free-surface height are used for visualization subject to several conditions such as fluid height, horizontal acceleration, sinusoidal motion, and viscosity. The free-surface heights were used for comparing wall-force, which is caused by sloshing of flows. Damping effects by baffles were extensively investigated for various conditions in terms of baffle shape and position.

The Numerical Study on the Cobustion Characteristics and the Heat Transfer Characteristics of Heat Exchanger for Condensing Gas Boiler (응축형 가스보일러 연소기의 연소특성 및 열교환기의 열전달특성에 관한 수치적 연구)

  • Kim, S.C.;Kum, S.M.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.71-78
    • /
    • 2001
  • It was numerically studied that characteristics of fluid flow and heat transfer in a tube with disk and annular baffle for heat exchanger of condensing boiler. Using a finite volume technique and CFD code, STAR-CD, the governing equations were solved and the temperature and flow fields were investigated. The interval between tube and annular baffle, height and diameter of baffle were selected as important design parameters, and the effects of these parameters on heat transfer and fluid flow were studied. As a result, in the case of with interval, the pressure was decreased but heat transfer was increased. Also heat transfer was slowly increased as the size of disk and annular baffle were increased and the distance between baffles were decreased.

  • PDF

Study for Effects of Sloshing Effect Reduction Device on Vessel Motion

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 2017
  • Since sloshing effects influences ship motions including floater's natural frequencies. The significant factors changing ship motions are inner liquid impact loads and inertia forces and moments with respect to its filling ratio. This means that changing sloshing loads with sloshing effects reduction device (SERD) may control ship motions. In this regard, conceptual model for adjustable SERD was suggested by authors and then implanted into fully coupled program between vessel motion and sloshing. By changing clearances of baffles in the inner tank which were component of SERD, then the roll RAOs from each case were obtained. It is revealed that using well-controlled SERD can maintain natural frequencies of floater even inner tank has different filling ratio.

A Study on Gas-Liquid Interfacial Areas with the Stirrer Spends for A$CO_2$bsorption in Agitated Vessel (평면 교반조에서의 $CO_2$ 기체흡수에서 교반속도에 따른 기-액 계면 면적에 관한 연구)

  • 박문기;문영수
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.403-408
    • /
    • 1994
  • Catalytic slurry reactors, in which a solid maintained in the rom of fine particles suspended in a liquid, are frequently used in chemical and biochemical and industries. In these processes the particle loading is normally low so that the effects of particles on the liquid-film mass transfer coefacent and the gas-liquid interface area are assumed to be negligible. But it is known from the works, amongst others, that the finely powdered activated carbon can increase the gas-liquid mass transfer significantly in surface-aerated reactors. The stirred cell (13.2cm inside diameter) contained four baffles and at the stirring speeds range of 80 ∼ 300ppm, the gas-liquid interfacial area could be considered as that of the cross section of the vessel (that is, 130.1cm2). When the stirrer speeds were increased, the effective interfacial area was slightly higher than the geometric area and was obtained experimentally from the Danckwerts plots. Key Words : gas-liquid interfacial area, Duckwert's Plot stirred dell. mass transfer coefficient.

  • PDF

Acoustic Analysis for Design Optimization of Hub-Blade Baffle in Liquid Rocket Engine (액체로켓엔진에서 음향해석을 통한 허브-블레이드 배플 형상의 최적화)

  • Kim, Hong-Jip;Kim, Seong-Ku;Seol, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.945-952
    • /
    • 2004
  • Acoustic characteristics of combustion chamber having various baffle configurations are numerically investigated by linear acoustic analysis to suggest reliable baffle specifications in first stage of KSLV-I. To determine the configuration of baffles, an acoustic modal analysis as well as the macroscopic analysis has been done. Hub has another effect of suppressing transverse acoustic mode by confining flow in baffled compartment over general effect of increase in acoustic damping of radial acoustic modes. So, a sufficient number of hub needs to be installed to obtain acoustic damping capacity. 3-blade configuration designed to suppress the first tangential mode has relatively low damping capacity, compared to 5 or 6-blade one. Optimum value of axial baffle length has been determined by comparing acoustic characteristics of combustion chamber having various baffle lengths.

Development of a Silencer for an Acoustic Enclosure of a Large Transformer (대형 변압기의 밀폐장치용 소음기 개발)

  • Lee, Jun-Shin;Lee, Wook-Ryun;Lee, Tae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.786-789
    • /
    • 2005
  • An acoustic total or partial enclosure is widely used to reduce the sound pressure level propagating from a noise source. However, the performance of the acoustic enclosure is decreased by its inherent limitations such as temperature rise or acoustic pressure build up inside the enclosed acoustic field. In general, a silencer is installed to overcome these limitations, for large amount of air can be exchanged through the silencers. In this reason, a parallel baffle type duct silencer with acoustic resonators is studied to reduce the transmitted noise from a transformer. In this silencer, the high frequency components of the transmitted noise over 360Hz are effectively absorbed by the parallel baffles and the other ones, 120 and 240 Hz, are reduced due to the presence of Helmholtz resonators. Large sound attenuation is achieved by applying the sound resonating barrier to the large transformers in a substation.

  • PDF