• 제목/요약/키워드: bacteriophages

검색결과 108건 처리시간 0.025초

Lactobacillus plantarum을 용균시키는 Bacteriophoge SC921의 분리 및 특성

  • Yoon, Sung-Sik;Shin, Young-Jae;Choi, Hak-Jong;Her, Song;Oh, Doo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • 제25권1호
    • /
    • pp.96-101
    • /
    • 1997
  • Among the lactic flora responsible for the development of acidity and characteristic flavor of Kimchi which is a traditional fermented Chiness cabbage. Homofermentative Lactobacillus plantarum is rod-shaped and to be known to ewert major role during later fermentation period. Once this strain establishes main flaora in the Kimchi fermentation process, it gives rise to excess acid production to reduce the taste and quality of Kimchi during storage. As a primary work to increase the keeping quality using virulent Lactobaillus plantarum bacteriophages, it was isolated sucessfully from collected Kimchi samples and their characteristics were studied. The new isolated phage, named SC 921, adsorbed to its host without Ca$^{2+}$, and nearly eliminated at 60$\circ $C of heat treatment for 5 min. This phages were atable at pH 4~ 10 but inactivated below pH 3.0 or pH 11.0 above. The latent period, rise period, and burst size of this phage was 100 min, 120 min, 31$\pm $2pfu/ml, respectively. Electron micrograph showed the phages particles were unusually oval feature of head (dia 80~ 120 nm) without contractile tail.

  • PDF

Practice of industrial strain improvement (제 1차 한.중 생명공학 심포지움)

  • Lei, Zhao-zu
    • The Microorganisms and Industry
    • /
    • 제19권2호
    • /
    • pp.34-41
    • /
    • 1993
  • Industrial strain improvement is concerned with developing or modifying microorganisms used in production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific characteristics such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empirical approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids, organic acids and enzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is a homoserine auxotroph with AEC, TA double metabolic analogue resistant markers. The yield reaches 100 g/l. Besides, the citric acid-producing organism Aspergillus niger, Co827, its productivity reaches the advanced level in the world, is also the result of a series mutations especially with $^60Co{\gamma}$-radiation. The thermostable .alpha.-amylase producing strain A 4041 is the third example. By combining physical and chemical mutations, the strain A 4041 becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The .alpha.-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus niger SP56, its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV-11. Recently, recombinant DNA approach provides a worthwhile alternative strategy to industrial strain improvement. This technique had been used by us to increase the thermostable .alpha.-amylase production and on some genetic researches.

  • PDF

Effect of Phosphates on Lytic Activity of Bacteriophages Infected in Lactobacilus Cells (유산간균 Bacteriophage의 증식억제물질)

  • 강국희;박기문
    • Microbiology and Biotechnology Letters
    • /
    • 제10권4호
    • /
    • pp.253-258
    • /
    • 1982
  • Lactobacillus casei YIT 9018 was infected with phage J1 and subjected to grow in $Ca^{++}$ -free MRT (spell out) medium under the presence of four different types of phosphates, sodium-metaphosphate,-pyrophos-phate,-dibasic phosphate, and potassium-phosphate. Among the phosphates tested, sodium pyrophosphate showed sufficient inhibition on the lytic activity of the phage at 0.1% level whereas other phosphate needed more than 0.2% for the same effect. When the concentration of sodium pyrophosphate increased to 0.17%, the bacteria could be protected from lysis until the second succeeding transfer.

  • PDF

Overexpression, Purification, and Immunogenicity of Recombinant Porin Proteins of Salmonella enterica Serovar Typhi (S. Typhi)

  • Verma, Shailendra Kumart;Gautam, Vandana;Balakrishna, Konduru;Kumar, Subodh
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.1034-1040
    • /
    • 2009
  • Porin proteins of Gram-negative bacteria are outer membrane proteins that act as receptors for bacteriophages and are involved in a variety of functions like solute transport, pathogenesis, and immunity. Salmonella enterica serovar Typhi (S. Typhi), a Gram-negative bacterium, is the causative agent of typhoid fever. Porins of S. Typhi have been shown to have a potential role in diagnostics and vaccination. In the present study, the major outer membrane proteins OmpF and OmpC from S. Typhi were cloned in pQE30UA vector and expressed in E. coli. The immunogenic nature of the recombinant porin proteins were evaluated by ELISA by raising hyperimmune sera in Swiss Albino mice with three different adjuvants (i.e., Freund's adjuvant and two human-compatible adjuvants like montanide and aluminium hydroxide gel) and proved to be immunogenic. The recombinant OmpF and OmpC generated in this work may be used for further studies for vaccination and diagnostics.

Isolation and Characterization of a Lytic and Highly Specific Phage against Yersinia enterocolitica as a Novel Biocontrol Agent

  • Gwak, Kyoung Min;Choi, In Young;Lee, Jinyoung;Oh, Jun-Hyun;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1946-1954
    • /
    • 2018
  • The aim of this study was to isolate and characterize a lytic Yersinia enterocolitica-specific phage (KFS-YE) as a biocontrol agent. KFS-YE was isolated and purified with the final concentration of ($11.72{\pm}0.03$) log PFU/ml from poultry. As observed by transmission electron microscopy, KFS-YE consisted of an icosahedral head and a contractile tail, and was classified in the Myoviridae family. KFS-YE showed excellent narrow specificity against Y. enterocolitica only. Its lytic activity was stable at wide ranges of pH (4-11) and temperature ($4-50^{\circ}C$). The latent period and burst size of KFS-YE were determined to be 45 min and 38 PFU/cell, respectively. KFS-YE showed relatively robust storage stability at -20, 4, and $22^{\circ}C$ for 40 weeks. KFS-YE demonstrated a bactericidal effect in vitro against Y. enterocolitica and provided excellent efficiency with a multiplicity of infection as low as 0.01. This study demonstrated the excellent specificity, stability, and efficacy of KFS-YE as a novel biocontrol agent. KFS-YE may be employed as a practical and promising biocontrol agent against Y. enterocolitica in food.

Strain Identification of Xanthomonas oryzae by Bacteriophages and their Distribution in Korea (Bacteriophage에 의한 벼흰빛잎마름병균의 계통분류 및 그 분포에 관한 연구)

  • Cho Yong Sup;Park Chang Seuk;Choi Yong Chul;Lee Kyung Hee
    • Korean journal of applied entomology
    • /
    • 제11권2호
    • /
    • pp.85-89
    • /
    • 1972
  • Fifty-one isolates of Xanthomonas oryzae collected from all over the Korean paddy field were classified as the eight different strains by using four different bacteriophage types. Strain-F was the most prevalent form and strain-H,C, and A followed the strain-F, respectively. Strain-D, however, had not found even single isolate although the strain·D is the most prevalent form at Japan and southern countries of Asia. There was no corelation between the type of strains and the area front which the strain had been collected. Six different types of strains were isolated from IR 667 varieties whereas the three strains were maximum that could isolated from single variety other than IR 667.

  • PDF

Endosymbionts and Phage WO Infections in Korean ant Species (Hymenoptera: Formicidae)

  • Park, Soyeon;Noh, Pureum;Kang, Jae-Yeon
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제1권1호
    • /
    • pp.52-57
    • /
    • 2020
  • Bacterial symbionts are common across insects, including ants (Hymenoptera: Formicidae). Reproduction-manipulating endosymbionts, such as Wolbachia, Spiroplasma, Rickettsia, and Cardinium, are closely associated with many aspects of host-insect life. In addition, phage WO plays an essential role in the phenotypic effects of Wolbachia. Although endosymbionts are possible biological control agents, there is a lack of knowledge of their rate of infection of ants in Korea. We tested a range of Korean ant species for the presence of Wolbachia, Spiroplasma, Rickettsia, Cardinium, and phage WO by extracting DNA from the ants and using specific primer sets to test the status of infections. In addition, the mitochondrial cytochrome c oxidase I (COI) gene of the host ants was amplified to confirm the molecular identification and phylogenetic relationship between the hosts. We found that infection with Wolbachia (29.6% of species) is relatively common when compared with that of other endosymbionts. Only one species was infected with Spiroplasma. Infection with Rickettsia and Cardinium was not detected in the examined ants. Most Wolbachia in ants were infected with phage WO. Although the phenotypic effects of endosymbionts in ants are still unknown, this first survey of endosymbionts in Korea is the first step toward the use of reproduction-manipulating endosymbionts.

Inhibiting the Growth of Escherichia coli O157:H7 in Beef, Pork, and Chicken Meat using a Bacteriophage

  • Seo, Jina;Seo, Dong Joo;Oh, Hyejin;Jeon, Su Been;Oh, Mi-Hwa;Choi, Changsun
    • Food Science of Animal Resources
    • /
    • 제36권2호
    • /
    • pp.186-193
    • /
    • 2016
  • This study aimed to inhibit Escherichia coli (E. coli) O157:H7 artificially contaminated in fresh meat using bacteriophage. Among 14 bacteriophages, the highly lytic bacteriophage BPECO19 strain was selected to inhibit E. coli O157:H7 in artificially contaminated meat samples. Bacteriophage BPECO19 significantly reduced E. coli O157:H7 bacterial load in vitro in a multiplicity of infection (MOI)-dependent manner. E. coli O157:H7 was completely inhibited only in 10 min in vitro by the treatment of 10,000 MOI BPECO19. The treatment of BPECO19 at 100,000 MOI completely reduced 5 Log CFU/cm2 E. coli O157:H7 bacterial load in beef and pork at 4 and 8h, respectively. In chicken meat, a 4.65 log reduction of E. coli O157:H7 was observed at 4 h by 100,000 MOI. The treatment of single bacteriophage BPECO19 was an effective method to control E. coli O157:H7 in meat samples.

국내기탁기관의 현황 2

  • 오두환
    • The Microorganisms and Industry
    • /
    • 제15권1호
    • /
    • pp.38-42
    • /
    • 1989
  • Industrial strain Improvement is concerned with developing or modifying microorga-nisms used In production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific cilarafteristic such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empiri-cal approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids. organic acids andenzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is it homoserine auxotroph with AEC, TA double metabolicanalogue resistant markers. The yield reaches 100g/1. Resides, the citric acid-producing organism Aspergillus nuger, Co827, its productivity reches the advanced level in the world, is also the result of a series mutations expecially with Co Y-radiation. The thermostable a-amylaseroducing strain A 4041 is the third example. By combining physical and chemical multations. the strain ,A 4041becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The a-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus nigerSP56 its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV_11. Recently recombinant DNA approach Provides a worth while alternative strategy to Industrial strain improve-ment. This technique had been used by us to increase the thermostable a-amylase production and on some genetic researches.

  • PDF

Phage Assembly Using APTES-Conjugation of Major Coat p8 Protein for Possible Scaffolds

  • Kim, Young Jun;Korkmaz, Nuriye;Nam, Chang Hoon
    • Interdisciplinary Bio Central
    • /
    • 제4권3호
    • /
    • pp.9.1-9.7
    • /
    • 2012
  • Filamentous phages have been in the limelight as a new type of nanomaterial. In this study, genetically and chemically modified fd phage was used to generate a biomimetic phage self-assembly product. Positively charged fd phage (p8-SSG) was engineered by conjugating 3-aminopropyltriethoxysilane (APTES) to hydroxyl groups of two serine amino acid residues introduced at the N-terminus of major coat protein, p8. In particular, formation of a phage network was controlled by changing mixed ratios between wild type fd phage and APTES conjugated fd-SSG phage. Assembled phages showed unique bundle and network like structures. The bacteriophage based self-assembly approach illustrated in this study might contribute to the design of three dimensional microporous structures. In this work, we demonstrated that the positively charged APTES conjugated fd-SSG phages can assemble into microstructures when they are exposed to negatively charged wild-type fd phages through electrostatic interaction. In summary, since we can control the phage self-assembly process in order to obtain bundle or network like structures and since they can be functionalized by means of chemical or genetic modifications, bacteriophages are good candidates for use as bio-compatible scaffolds. Such new type of phage-based artificial 3D architectures can be applied in tuning of cellular structures and functions for tissue engineering studies.