• Title/Summary/Keyword: bacteriocin production

Search Result 128, Processing Time 0.022 seconds

Utilization the Tofu-Residue for Production of the Bacteriocin 1. Cultural Conditions of Bacillus sp. for Amylase (박테리오신의 생산을 위한 두부비지의 이용 1. 두부비지에서 분리한 Bacillus sp.에 의한 Amylase의 생산조건)

  • 이선희;이명숙
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.3
    • /
    • pp.271-276
    • /
    • 2000
  • A amylase producing bacteria were isolated from tofu residue and identified as Bacillus sp. according to the morphological and biochemical properties, which were named Bacillus sp. GM7330 and Bacillus sp. GM7312. The cultural condition for the production of amylase was showed on 5% tofu residue added 3% glucose and 0.15% yeast extract. And incubated during 72 hrs at 30。C, Bacillus sp. GM7330 and Bacillus sp. GM7312 were producing amylase of 488 units and 341 units.

  • PDF

Studies on the Protoplast Formation and Regeneration of Lactobacillus acidophilus 88 (Lactobacillus acidophilus 88의 Protoplast 형성 및 재생에 관한 연구)

  • Jun, Hong-Ki;Heo, Kyeong;Jo, Young-Bae;Baik, Hyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.143-151
    • /
    • 1994
  • In the course of the study on strain inprovement by protoplast fusion, Lactobacillus acidophilus 88 protoplasts production and regeneration conditions were investigated. This strain produced a bacteriocin that revealed strong inhibitory activity against various indicator strains, especially L. helveticus CNRZ 1096. Protoplasts of L. acidophilus 88 strains were very efficiently obtained by treatment with 125 $\mu $g/ml lysozyme in a protoplast forming buffer containing 20 mM N-2 hydroxy-ethtl-piperazine-N'-2-ethane-sulfonic acid(HEPES, pH 7.0) and 1M sucrose at 37$\circ $C for 30 min. Hovever, treatment with mutanolysin was not effective for the production of L. acidophilus 88 protoplasts under the same conditions. High protoplast yield was obtained form the cells at the middle to late logarithmic growth phase in the de Man, Rogosa and Sharpe(MRS) medium. Regeneration was efficiently accomplished with the MRS medium containing 10% sucrose.

  • PDF

Antibacterial Effects of Lactococcus lactis HK-9 Isolated from Feces of a New Born Infant (신생아 태변에서 젖산세균인 Lactococcus lactis HK-9의 분리 및 항균활성)

  • Baek, Hyun;Ahn, Hye-Ran;Cho, Yun-Seok;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.127-133
    • /
    • 2010
  • The purpose of this work was to investigate the antibacterial activity derived from a lactic acid bacterium, Lactococcus lactis HK-9, isolated from the feces of a 2-day newborn infant. We characterized the physiological and biochemical properties of this strain. Both the BIOLOG system and phylogenetic analysis using 16S rRNA sequencing were utilized for identification, and the strain was assigned to the Lactococcus lactis species, designated as L. lactis HK-9, and registered in GenBank as [GU936712]. We monitored growth rate, production of lactic acid and acetic acid as metabolites, and pH during growth. The maximum concentrations of lactic acid and acetic acid reached 495.6 mM and 104.3 mM, respectively, and the initial pH of the cultures decreased from 7.0 to 4.1 after incubating for 60 h. HPLC was used to confirm the production of lactic acid and acetic acid. Significant antibacterial activity of the concentrated supernatant was demonstrated against Gram-positive (e.g., Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, MRSA) and Gram-negative (e.g., Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Shigella sonnei) bacteria by the plate diffusion method. The antibacterial activity was sensitive to protease, and the molecular weight of the presumed bacteriocin molecule was estimated to be about 4 kDa by tricine-SDS-PAGE.

Efficacy of Antibacteriocidal Yeast That Producing Bacteriocin OR-7 in Chicken (박테리오신 OR-7을 생산하는 항균 효모의 양계에서의 사양시험 효과)

  • Cho, Dong-In;Kang, Sang-Mo;Lee, Jae-Hwa;Lee, Sang-Hyeon;Kim, Nam-Young;Kim, Ki-Seuk
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • This study was conducted to investigate the effects of feeding probiotics(gene modified yeast) on the egg quality in laying hens. The laboratory method of this study is as follow: In hens, 300, 36 weeks old ISA brown commercial layer, were employed in 13weeks feeding trial with a 7 days adjustment period. Dietary treatments are 1) control (basal diet) 2) Y0.3 (basal diet+0.3% probiotics), 3) Y0.5% (basal diet+0.5% probiotics), 4) PY0.3% (basal diet+0.3% plasmid modified probiotics), 5) PY0.5% (basal diet+0.5% plasmid modified probiotics). For overall period, hen-day egg production, egg weight (p<0.05) by dietary probiotic supplementation were recorded. Eggs were collected and weighed every day. Egg production number and egg production rate, egg weight, failure egg ratio and trouble egg ratio were recorded for 13weeks days. Diets PY0.3 and PY0.5 improved Egg production rate, egg production number and egg weight, compared to control diet (linear effect. p<0.05). And, diets PY0.3 and PY0.5 improved Egg production rate, egg production number, compared to Y0.3 and Y0.5 (linear effect. p<0.05). But, in Inferior egg and cracked egg, diets PY0.3 and PY0.5 did not tended to increase by dietary probiotic supplementation compared to control diet and Y group (0.3, 0.5) (linear effect. p<0.05). The productivity enhance on the egg quality in laying hens is considered from the effects of feeding probiotics(gene modified yeast).

Characterization and Enhanced Production of Enterocin HJ35 by Enterococcus faecium HJ35 Isolated from Human Skin

  • Yoon Yoh Chang;Park Hye Jung;Lee Na-Kyoung;Paik Hyun-Dong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.296-303
    • /
    • 2005
  • A strain named as HJ35 was isolated from the skin of sixty-five men and fourteen women for acne therapy, in order to find an effective antimicrobial agent against Propionibacterium acnes. Isolate HJ35 was identified as Enterococcus faecium based on 16 rDNA sequence and produced enterocin HJ35 having antimicrobial activities against most lactic acid bacteria, En­terococcus spp., Staphylococcus aureus, S. epidermidis, Clostridium perfringens, some bacilli, Mi­crococcus flavus, Listeria monocytogenes, L. ivanovii, Escherichia coli, Pseudomonas fluorescens and Propionibacterium acnes, in the modified well diffusion method. Especially, enterocin HJ35 showed a bactericidal activity against Propionibacterium acnes P1. The antimicrobial activity of enterocin HJ35 was disappeared completely with the use of protease XIV. But enterocin HJ35 activity is very stable at high temperature (up to $100^{\circ}C$ for 30 min), in wide range of pH (3.0${\~}$9.0), and by treatment with organic solvents. The apparent molecular mass of enterocin HJ35 was estimated to be approximately 4${\~}$4.5 kDa on detection of its bactericidal activity after SDS-PAGE. In batch fermentation of E. faecium HJ35, enterocin HJ35 was produced at the mid­log growth phase, and its maximum production was obtained up to 2,300 AU/mL at the late stationary phase. By employing fed-batch fermentation, the enhanced production of enterocin HJ35 was achieved up to 12,800 AU/mL by feeding with 10 g/L glucose or 6 g/L lactate.

Escherichia coli-Derived Uracil Increases the Antibacterial Activity and Growth Rate of Lactobacillus plantarum

  • Ha, Eun-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.975-987
    • /
    • 2016
  • Lactobacillus plantarum (L. plantarum) is a representative probiotic. In particular, L. plantarum is the first commensal bacterium to colonize the intestine of infants. For this reason, the initial settlement of L. plantarum can play an important role in determining an infant's health as well as their eventual health status as an adult. In addition, L. plantarum combats pathogenic infections (such as Escherichia coli (E. coli), one of the early pathogenic colonizers in an unhealthy infant gut) by secreting antimicrobial substances. The aim of this research was to determine how L. plantarum combats E. coli infection and why it is a representative probiotic in the intestine. Consequently, this research observed that E. coli releases uracil. L. plantarum specifically recognizes E. coli-derived uracil, which increases the growth rate and production of antimicrobial substance of L. plantarum. In addition, through the inhibitory activity test, this study postulates that the antimicrobial substance is a protein and can be considered a bacteriocin-like substance. Therefore, this research assumes that L. plantarum exerts its antibacterial ability by recognizing E. coli and increasing its growth rate as a result, and this phenomenon could be one of the reasons for L. plantarum settling in the intestine of infants as a beneficial bacterium.

Inhibition of Pathogenic Bacteria by Pediococcus pentosaceus Strain SH-10 Isolated from Hard Clam Meretrix meretrix Sikhae (백합(Meretrix meretrix) 식해에서 분리한 Pediococcus pentosaceus SH-10에 의한 병원성 세균의 억제 기작)

  • Shin, Dong-Min;Kim, Hee-Dai;Koo, Jae-Geun;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.600-605
    • /
    • 2012
  • In this study, we investigated the mechanism of inhibition of pathogenic bacteria by Pediococcus pentosaceus strain SH-10 isolated from hard Clam Meretrix meretrix sikhae. When P. pentosaceus SH-10 was co-cultured in MRS broth with pathogenic bacteria, including Bacillus cereus, Listeria monocytogenes, Salmonella choleraesuis and Staphyloccus aureus, no viable pathogenic cells were detected after 18 h of incubation. However, pediocin or a pediocin-like bacteriocin was not detected in cultures of P. pentosaceus SH-10 by the agar diffusion method. Organic acids were produced in MRS broth in proportion to the incubation time of P. pentosaceus SH-10. These results indicate that P. pentosaceus SH-10 inhibited the growth of pathogenic bacteria by lowering the pH of the growth medium through the production of organic acids, including sodium lactate, sodium acetate, and sodium citrate.

The Effects of Sodium Chloride on the Physiological Characteristics of Listeria monocytogenes

  • Choi, Kyoung-Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.395-402
    • /
    • 2013
  • Sodium chloride is used to improve various properties of processed meat products, e.g., taste, preservation, water binding capacity, texture, meat batter viscosity, safety, and flavor; however, many studies have shown that sodium chloride increases the resistance of many foodborne pathogens to heat and acid. Listeria monocytogenes has been isolated from various readyto- eat (RTE) meat and dairy products formulated with sodium chloride; therefore, the objective of this paper was to review the effects of sodium chloride on the physiological characteristics of L. monocytogenes. The exposure of L. monocytogenes to sodium chloride may increase biofilm formation on foods or food contact surfaces, virulence gene transcription, invasion of Caco-2 cells, and bacteriocin production, depending on L. monocytogenes strain and serotype as well as sodium chloride concentration. When L. monocytogenes cells were exposed to sodium chloride, their resistance to UV-C irradiation and freezing temperatures increased, but sodium chloride had no effect on their resistance to gamma irradiation. The morphological properties of L. monocytogenes, especially cell elongation and filament formation, also change in response to sodium chloride. These findings indicate that sodium chloride affects various physiological responses of L. monocytogenes and thus, the effect of sodium chloride on L. monocytogenes in RTE meat and dairy products needs to be considered with respect to food safety. Moreover, further studies of microbial risk assessment should be conducted to suggest an appropriate sodium chloride concentration in animal origin foods.

Isolation and Characterization of Lactobacillus sp. FF-3 for Probiotics Production from Korean Dongchimi. (동치미 유래 생균제로서 가능성이 있는 Lactobacillus sp. FF-3의 분리와 특성)

  • 정원복;서원석;차재영;조영수
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.406-410
    • /
    • 2003
  • For selection of lactic acid bacteria for probiotics, we have examined isolated strains from Korean Dongchimi to assess the acid, bile, and pancreatic tolerance and the growth inhibition on the pathogens. Especially, a kind of isolated strains, FF-3 showed the highest resistancy to both of HCl and bile salt, as well as the highest inhibitory activities against Salmonella sp. and Escherichia coli. Further the bacteriocin of FF-3 showed relatively wide range of inhibition spectrum against gram positive and some gram negative bacterias. By using 16s rDNA sequencing method, FF-3 of the selected lactic acid bacteria were found to be identified as genus Lactobacillus.

Draft Genome Sequence of Latilactobacillus sakei subsp. sakei FBL10, a Putative Probiotic Strain Isolated from Saeujeot (salted fermented shrimp)

  • So-Yun Lee;Dabin Kim;Seung-Min Yang;Eiseul Kim;Hae-Yeong Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.526-530
    • /
    • 2023
  • Here, we report the draft genome sequence of Latilactobacillus sakei subsp. sakei FBL10 isolated from Saeujeot (salted fermented shrimp). The draft genome consists of 2,285,672 bp with a G+C content of 41.1% and contains 2,282 coding genes. Genome analysis revealed that clusters associated with bacteriocin production were identified, in addition to several probiotic properties, such as stress resistance factors and aggregation. On the other hand, antibiotic resistance genes and virulence factors were not present. Pangenome analysis for 32 genomes showed 213 unique genes for FBL10 strain. These results demonstrate the beneficial properties of strain FBL10 as a putative probiotic.