• Title/Summary/Keyword: bacteriocin, purification

Search Result 38, Processing Time 0.017 seconds

Characterization and Purification of Acidocin 1B, a Bacteriocin Produced by Lactobacillus acidophilus GP1B

  • Han, Kyoung-Sik;Kim, Young-Hoon;Kim, Sae-Hun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.774-783
    • /
    • 2007
  • In the present study, acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP 1B, exhibited profound inhibitory activity against a variety of LAB and pathogens, including Gram-negative bacteria, and its mode of action was to destabilize the cell wall, thereby resulting in bactericidal lysis. Acidocin 1B was found to be heat stable, because it lost no activity when it was heated up to $95^{\circ}C$ for 60 min. It retained approximately 67% of the initial activity after storage for 30 days at $4^{\circ}C$, and 50% of its initial activity after 30 days at $25^{\circ}C$ and $37^{\circ}C$. The molecular mass of acidocin 1B was estimated to be 4,214.65 Da by mass spectrometry. Plasmid curing results indicated that a plasmid, designated as pLA1B, seemed to be responsible for both acidocin 1B production and host immunity, and that the pLA1B could be transformed into competent cells of L. acidophilus ATCC 43121 by electroporation. Our findings indicate that the acidocin 1B and its producer strain may have potential value as a biopreservative in food systems.

Purification and Characterization of a Bacteriocin, BacBS2, Produced by Bacillus velezensis BS2 Isolated from Meongge Jeotgal

  • Perumal, Venkatesh;Yao, Zhuang;Kim, Jeong A;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1033-1042
    • /
    • 2019
  • Bacillus velezensis BS2 was isolated from meongge (common sea squirt) jeotgal, a Korean fermented seafood, and produces a bacteriocin, BacBS2, which strongly inhibits Listeria monocytogenes and Bacillus cereus. BacBS2 was partially purified by Q-Sepharose column chromatography after ammonium sulfate precipitation of the culture supernatant, then further purified by Sephadex G-50 column chromatography. Partially purified BacBS2 was estimated to be 6.5 kDa in size by Tricine-SDS PAGE and activity detection by gel-overlay. Enzyme treatment and FT-IR spectrum of partially purified BacBS2 confirmed its proteinaceous nature. BacBS2 was fully stable at pH 4-9, and half of activity was retained at pH 1-3. Full activity was retained after exposure to $80^{\circ}C$ for 15 min, but half of the activity was retained upon exposure to $90^{\circ}C$ for 15 min or $100^{\circ}C$for 10 min. BacBS2 inhibited L. monocytogenes by bactericidal mode of action. B. velezensis BS2 and its BacBS2 seem useful as biopreservatives for fermented foods such as jeotgal.

Purification and Characterization of an Antibacterial Substance from Aerococcus urinaeequi Strain HS36

  • Sung, Ho Sun;Jo, Youl-Lae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.93-100
    • /
    • 2020
  • A bacterial strain inhibiting the growth of Vibrio anguillarum, the causative agent of vibriosis, was isolated from fish intestines. The isolated strain HS36 was identified as Aerococcus urinaeequi based on the characteristics of the genus according to Bergey's Manual of Systematic Bacteriology and by 16S rRNA sequencing. The growth rate and antibacterial activity of strain HS36 in shaking culture were higher than those in static culture, while the optimal pH and temperature for antibacterial activity were 7.0 and 30℃, respectively. The active antibacterial substance was purified from a culture broth of A. urinaeequi HS36 by Sephadex G-75 gel chromatography, Sephadex G-25 gel chromatography, and reverse-phase high-performance liquid chromatography. Its molecular weight, as estimated by Tricine SDS-polyacrylamide gel electrophoresis, was approximately 1,000 Da. The antibacterial substance produced by strain HS36 was stable after incubation for 1 h at 100℃. Although its antibacterial activity was optimal at pH 6-8, activity was retained at a pH range from 2 to 11. The purified antibacterial substance was inactivated by proteinase K, papain, and β-amylase treatment. The newly purified antibacterial substance, classified as a class II bacteriocin, inhibited the growth of Klebsiella pneumoniae, Salmonella enterica, and Vibrio alginolyticus.

Perspectives for the Industrial Use of Bacteriocin in Dairy and Meat Industry (축산업 분야에서의 박테리오신의 산업적 이용 및 향후 전망)

  • Lee, Na-Kyoung;Lee, Joo-Yeon;Kwak, Hyung-Geun;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • More safe and natural food was recently needed by consumers. Antimicrobials including sodium azide, penicillin, and vancomycin were used for therapeutic agents against pathogens such as Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 in dairy and meat industry. These antimicrobials and preservatives were prohibited in stock farm and food because they were caused resistant strain and side effects. Bacteriocins are proteinaceous compounds that may present antimicrobial activity towards important food-borne pathogens and spoilage-related microflora. Therefore, bacteriocins were reported as an alternative of antimicrobials. Due to these properties, bacteriocin-producing strains or purified bacteriocins have a great potential of use in biologically based food preservation systems. Despite the growing number of articles regarding on the isolation of bacteriocinogenic strains, genetic determinants for production, purification and biochemical characterization of these inhibitory substances, there are only limited reports of successful application of bacteriocins to dairy and meats. This review describes bacteriocins related to dairy and meat products for the further use.

Purification and Characterization of Antibacterial Compound Produced by Bacillus subtilis MJP1 (Bacillus subtilis MJP1이 생산하는 항세균 물질의 분리.정제 및 특성규명)

  • Yim, Eun-Jung;Yang, Eun-Ju;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • Antibacterial compound from Bacillus subtilis MJP1 was purified using C18 Sep-Pak cartridge, ion exchange chromatography, and gel filtration chromatography. The purified antibacterial compound showed antibacterial activity against Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus subsp. aureus, and Enterococcus faecalis. The purified antibacterial compound was found to be stable at $100^{\circ}C$ for 5 min and in the pH range of 3.0~9.0, but it was unstable at pH 10.0. It was inactivated by proteinase K and pronase E, and heat treatment at $121^{\circ}C$ for 15 min, but it was stable with lipase and $\alpha$-amylase treatment, which indicated its proteineous nature. Ultra performance liquid chromatography and electrospray ionization tandem mass spectrometry analysis were used to identify the purified antibacterial compound and confirmed the existence of two peptides (3356.54 Da, 3400.5244 Da).

R-Type Pyocin is Required for Competitive Growth Advantage Between Pseudomonas aeruginosa Strains

  • Heo Yun-Jeong;Chung In-Young;Choi, Kelly B.;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.180-185
    • /
    • 2007
  • R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P aeruginosa population dynamics to promote and maintain its biodiversity.

Antimicrobial Substance against Escherichia coli O157:H7 Produced by Lactobacillus amylovorus ME1

  • Jung, Byung-Moon;Woo, Suk-Gyu;Chung, Kun-Sub
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.679-682
    • /
    • 2008
  • A lactic acid bacterium producing an antimicrobial substance against Escherichia coli O157:H7 was isolated from raw milk and identified as Lactobacillus amylovorus ME-1. In addition to E. coli O157 :H7, the antimicrobial substance also inhibited the growth of Bacillus cereus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pyrogenes, and Yersinia enterocolitica. The antimicrobial substance was stable at pH 2-12 and $121^{\circ}C$ for 15 min and insensitive to proteinase K, protease, amylase, and catalase. Purification of the antimicrobial substance was conducted through methanol and acetonitrile/ethylacetate extraction, ultrafiltration with a 500 Da cutoff, thin layer chromatography (TLC) with silicagel 60, and high performance liquid chromatography (HPLC) with a $C_{18}$ reverse phase column. The ${\lambda}_{max}$ of the purified antimicrobial substance was determined as 192 nm by ultra violet (UV) scanning, while the molecular weight was estimated as 453 Da based on the mass spectrum. Accordingly, the current results suggest that the antimicrobial substance from the L. amylovorus ME-1 was not a bacteriocin, but rather a new non-proteinaceous substance distinct from acidophilin, acidolin, diacetyl, and reuterin.

Antibacterial Activity and Probiotic Potential of Lactobacillus plantarum HKN01: A New Insight into the Morphological Changes of Antibacterial Compound-Treated Escherichia coli by Electron Microscopy

  • Sharafi, Hakimeh;Maleki, Hadi;Ahmadian, Gholamreza;Zahiri, Hossein Shahbani;Sajedinejad, Neda;Houshmand, Behzad;Vali, Hojatollah;Noghabi, Kambiz Akbari
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.225-236
    • /
    • 2013
  • Among several bacteria examined, an antibacterial-producing Lactobacillus strain with probiotic characteristics was selected and identified based on 16S rRNA gene sequencing. Subsequent purification and mode of action of the antibacterial compounds on target cells including E. coli were investigated. Maximum production of the antibacterial compound was recorded at 18 h incubation at $30^{\circ}C$. Interestingly, antibacterial activity remained unchanged after heating at $121^{\circ}C$ for 45 min, 24 h storage in temperature range of $70^{\circ}C$ to room temperature, and 15 min exposure to UV light, and it was stable in the pH of range 2-10. The active compounds were inactivated by proteolytic enzymes, indicating their proteinaceous nature, and, therefore, referred to as bacteriocin-like inhibitory substances. Isolation and partial purification of the effective agent was done by performing ammonium sulfate precipitation and gel filtration chromatography. The molecular mass of the GFC-purified active compound (~3 kDa) was determined by Tris-Tricine SDS-PAGE. To predict the mechanisms of action, transmission electron microscopy (TEM) analysis of ultrathin sections of E. coli before and after antibacterial treatment was carried out. TEM analysis of antibacterial compounds-treated E. coli demonstrated that the completely altered bacteria appear much darker compared with the less altered bacteria, suggesting a change in the cytoplasmic composition. There were also some membrane-bound convoluted structures visible within the completely altered bacteria, which could be attributed to the response of the E. coli to the treatment with the antibacterial compound. According to the in vivo experiments oral administration of L. plantarum HKN01 resulted in recovery of infected BALB/c mice with Salmonella enterica ser. Typhimurium.