R-Type Pyocin is Required for Competitive Growth Advantage Between Pseudomonas aeruginosa Strains

  • Published : 2007.01.31

Abstract

R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P aeruginosa population dynamics to promote and maintain its biodiversity.

Keywords

References

  1. Bodey, G. P., R. Bolivar, V. Fainstein, and L. Jadeja. 1983. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 5: 279-313 https://doi.org/10.1093/clinids/5.2.279
  2. Daw, M. A. and F. R. Falkiner. 1997. Bacteriocins: Nature, function and structure. Micron. 27: 467-479 https://doi.org/10.1016/S0968-4328(96)00028-5
  3. Duport, C., C. Baysse, and Y. Michel-Briand. 1995. Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. J. Biol. Chem. 270: 8920-8927 https://doi.org/10.1074/jbc.270.15.8920
  4. Dyke, J. and R. S. Berk. 1974. Growth inhibition and pyocin receptor properties of endotoxin from Pseudomonas aeruginosa. Proc. Soc. Exp. Biol. Med. 145: 1405-1408
  5. He, J., R. L. Baldini, E. Deziel, M. Saucier, Q. Zhang, N. T. Liberati, D. Lee, J. Urbach, H. M. Goodman, and L. G. Rahme. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. USA 101: 2530-2505
  6. Heo, Y.-J., K.S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages of various Pseudomonas aeruginosa strains. J. Microbiol. Biotech. 14: 367-372
  7. Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86 https://doi.org/10.1016/S0378-1119(98)00130-9
  8. Ishii, S. I., Y. Nishi, and F. Egami. 1965. The fine structure of a pyocin. J. Mol. Biol. 13: 428-431 https://doi.org/10.1016/S0022-2836(65)80107-3
  9. Kerr, B., M. A. Riley, M. W. Feldman, and B. J. M. Bohannan. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418: 171-174 https://doi.org/10.1038/nature00823
  10. Kim, J. D. and C. G. Lee. 2006. Influence of extracellular products from Haematococcus pluvialis on growth and bacteriocin production by three species of Lactobacillus. J. Microbiol. Biotech. 16: 849-854
  11. Kirkup, B. C. and M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428: 412-414 https://doi.org/10.1038/nature02429
  12. Kuroda, K. and M. Kageyama. 1979. Biochemical properties of a new flexuous bacteriocin, pyocin F1, produced by Pseudomonas aeruginosa. J. Biochem. 85: 7-19 https://doi.org/10.1093/oxfordjournals.jbchem.a132332
  13. Lee, J. H., M. J. Kim, D. W. Jeong, M. J. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H. Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from Kimchi. J. Microbiol. Biotechnol. 15: 428-433
  14. Lee, Y. H. 2006. Promotion of bone nodule formation and inhibition of growth and invasion of Streptococcus mutans by Weissella kimchii PL9001. J. Microbiol. Biotechnol. 16: 531-537
  15. Matsui, H., Y. Sano, H. Ishihara, and T. Shinomiya. 1993. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J. Bacteriol. 175: 1257-1263 https://doi.org/10.1128/jb.175.5.1257-1263.1993
  16. Michel-Briand, Y. and C. Baysse. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie. 84: 499-510 https://doi.org/10.1016/S0300-9084(02)01422-0
  17. Montgomery, K. T., G. Grills, L. Li, W. A. Brown, J. Decker, R. Elliot, L. J. Gendal, K. Osborn, A. Perera, C. Xi, P. Juels, D. Lee, N. T. Liberati, J. He, S. Miyata, L. G. Rahme, M. Saucier, J. M. Urbach, F. M. Ausubel, and R. Kucherlapati. 2002. Pseudomonas aeruginosa strain UCBPP-PA14 whole genome shotgun sequencing project. Direct submission. Accession numbers AABQ07000000-AABQ07000005 [Online.] http://www.ncbi.nlm.nih.gov
  18. Nakayama, K., K. Takashima, H. Ishihara, T. Shinomiya, M. Kageyama, S. Kanaya, M. Ohnishi, T. Murata, H. Mori, and T. Hayashi. 2000. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38: 213-231 https://doi.org/10.1046/j.1365-2958.2000.02135.x
  19. Nakayama, K., S. Kanaya, M. Ohnishi, Y. Terawaki, and T. Hayashi. 1999. The complete nucleotide sequence of phage CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: Implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31: 399- 419 https://doi.org/10.1046/j.1365-2958.1999.01158.x
  20. Parret, A. H. and R. De Mot. 2002. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gammaproteobacteria. Trends Microbiol. 10: 107-112 https://doi.org/10.1016/S0966-842X(02)02307-7
  21. Potvin, E., D. E. Lehoux, I. Kukavica-Ibrulj, K. L. Richard, F. Sanschagrin, G. W. Lau, and R.C. Levesque. 2003. In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ. Microbiol. 5: 1294-1308 https://doi.org/10.1046/j.1462-2920.2003.00542.x
  22. Rainey, P. B. and M. Travisano. 1998. Adaptive radiation in a heterogeneous environment. Nature 394: 69-72 https://doi.org/10.1038/27900
  23. Reeves, P. 1965. The bacteriocins. Bacteriol. Rev. 29: 24- 45
  24. Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 56: 117- 137 https://doi.org/10.1146/annurev.micro.56.012302.161024
  25. Seo, Y. and D. R. Galloway. 1990. Purification of the pyocin S2 complex from Pseudomonas aeruginosa PAO1: Analysis of DNase activity. Biochem. Biophys. Res. Commun. 172: 455-461 https://doi.org/10.1016/0006-291X(90)90694-I
  26. Uratani, Y. and T. Hoshino. 1984. Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential. J. Bacteriol. 157: 632-636
  27. Webb, J. S., L. S. Thompson, S. James, T. Charlton, T. Tolker-Nielsen, B. Koch, M. Givskov, and S. Kjelleberg. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185: 4585-4592 https://doi.org/10.1128/JB.185.15.4585-4592.2003
  28. Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 8484-8489
  29. Yokota, S., T. Hayashi, and H. Matsumoto. 1994. Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage, $\phi$CTX, of Pseudomonas aeruginosa. J. Bacteriol. 176: 5262-5269 https://doi.org/10.1128/jb.176.17.5262-5269.1994