References
- Bodey, G. P., R. Bolivar, V. Fainstein, and L. Jadeja. 1983. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 5: 279-313 https://doi.org/10.1093/clinids/5.2.279
- Daw, M. A. and F. R. Falkiner. 1997. Bacteriocins: Nature, function and structure. Micron. 27: 467-479 https://doi.org/10.1016/S0968-4328(96)00028-5
- Duport, C., C. Baysse, and Y. Michel-Briand. 1995. Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. J. Biol. Chem. 270: 8920-8927 https://doi.org/10.1074/jbc.270.15.8920
- Dyke, J. and R. S. Berk. 1974. Growth inhibition and pyocin receptor properties of endotoxin from Pseudomonas aeruginosa. Proc. Soc. Exp. Biol. Med. 145: 1405-1408
- He, J., R. L. Baldini, E. Deziel, M. Saucier, Q. Zhang, N. T. Liberati, D. Lee, J. Urbach, H. M. Goodman, and L. G. Rahme. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. USA 101: 2530-2505
- Heo, Y.-J., K.S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages of various Pseudomonas aeruginosa strains. J. Microbiol. Biotech. 14: 367-372
- Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86 https://doi.org/10.1016/S0378-1119(98)00130-9
- Ishii, S. I., Y. Nishi, and F. Egami. 1965. The fine structure of a pyocin. J. Mol. Biol. 13: 428-431 https://doi.org/10.1016/S0022-2836(65)80107-3
- Kerr, B., M. A. Riley, M. W. Feldman, and B. J. M. Bohannan. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418: 171-174 https://doi.org/10.1038/nature00823
- Kim, J. D. and C. G. Lee. 2006. Influence of extracellular products from Haematococcus pluvialis on growth and bacteriocin production by three species of Lactobacillus. J. Microbiol. Biotech. 16: 849-854
- Kirkup, B. C. and M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428: 412-414 https://doi.org/10.1038/nature02429
- Kuroda, K. and M. Kageyama. 1979. Biochemical properties of a new flexuous bacteriocin, pyocin F1, produced by Pseudomonas aeruginosa. J. Biochem. 85: 7-19 https://doi.org/10.1093/oxfordjournals.jbchem.a132332
- Lee, J. H., M. J. Kim, D. W. Jeong, M. J. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H. Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from Kimchi. J. Microbiol. Biotechnol. 15: 428-433
- Lee, Y. H. 2006. Promotion of bone nodule formation and inhibition of growth and invasion of Streptococcus mutans by Weissella kimchii PL9001. J. Microbiol. Biotechnol. 16: 531-537
- Matsui, H., Y. Sano, H. Ishihara, and T. Shinomiya. 1993. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J. Bacteriol. 175: 1257-1263 https://doi.org/10.1128/jb.175.5.1257-1263.1993
- Michel-Briand, Y. and C. Baysse. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie. 84: 499-510 https://doi.org/10.1016/S0300-9084(02)01422-0
- Montgomery, K. T., G. Grills, L. Li, W. A. Brown, J. Decker, R. Elliot, L. J. Gendal, K. Osborn, A. Perera, C. Xi, P. Juels, D. Lee, N. T. Liberati, J. He, S. Miyata, L. G. Rahme, M. Saucier, J. M. Urbach, F. M. Ausubel, and R. Kucherlapati. 2002. Pseudomonas aeruginosa strain UCBPP-PA14 whole genome shotgun sequencing project. Direct submission. Accession numbers AABQ07000000-AABQ07000005 [Online.] http://www.ncbi.nlm.nih.gov
- Nakayama, K., K. Takashima, H. Ishihara, T. Shinomiya, M. Kageyama, S. Kanaya, M. Ohnishi, T. Murata, H. Mori, and T. Hayashi. 2000. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38: 213-231 https://doi.org/10.1046/j.1365-2958.2000.02135.x
- Nakayama, K., S. Kanaya, M. Ohnishi, Y. Terawaki, and T. Hayashi. 1999. The complete nucleotide sequence of phage CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: Implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31: 399- 419 https://doi.org/10.1046/j.1365-2958.1999.01158.x
- Parret, A. H. and R. De Mot. 2002. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gammaproteobacteria. Trends Microbiol. 10: 107-112 https://doi.org/10.1016/S0966-842X(02)02307-7
- Potvin, E., D. E. Lehoux, I. Kukavica-Ibrulj, K. L. Richard, F. Sanschagrin, G. W. Lau, and R.C. Levesque. 2003. In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ. Microbiol. 5: 1294-1308 https://doi.org/10.1046/j.1462-2920.2003.00542.x
- Rainey, P. B. and M. Travisano. 1998. Adaptive radiation in a heterogeneous environment. Nature 394: 69-72 https://doi.org/10.1038/27900
- Reeves, P. 1965. The bacteriocins. Bacteriol. Rev. 29: 24- 45
- Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 56: 117- 137 https://doi.org/10.1146/annurev.micro.56.012302.161024
- Seo, Y. and D. R. Galloway. 1990. Purification of the pyocin S2 complex from Pseudomonas aeruginosa PAO1: Analysis of DNase activity. Biochem. Biophys. Res. Commun. 172: 455-461 https://doi.org/10.1016/0006-291X(90)90694-I
- Uratani, Y. and T. Hoshino. 1984. Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential. J. Bacteriol. 157: 632-636
- Webb, J. S., L. S. Thompson, S. James, T. Charlton, T. Tolker-Nielsen, B. Koch, M. Givskov, and S. Kjelleberg. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185: 4585-4592 https://doi.org/10.1128/JB.185.15.4585-4592.2003
- Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 8484-8489
-
Yokota, S., T. Hayashi, and H. Matsumoto. 1994. Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage,
$\phi$ CTX, of Pseudomonas aeruginosa. J. Bacteriol. 176: 5262-5269 https://doi.org/10.1128/jb.176.17.5262-5269.1994