• Title/Summary/Keyword: bacterial viability

Search Result 184, Processing Time 0.032 seconds

Influence of Commercial Antibiotics on Biocontrol of Soft Rot and Plant Growth Promotion in Chinese Cabbages by Bacillus vallismortis EXTN-1 and BS07M

  • Sang, Mee Kyung;Dutta, Swarnalee;Park, Kyungseok
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • We investigated influence of three commercial antibiotics viz., oxolinic acid, streptomycin, and validamycin A, on biocontrol and plant growth promoting activities of Bacillus vallismortis EXTN-1 and BS07M in Chinese cabbage. Plants were pre-drenched with these strains followed by antibiotics application at recommended and ten-fold diluted concentration to test the effect on biocontrol ability against soft rot caused by Pectobacterium carotovorum SCC1. The viability of the two biocontrol strains and bacterial pathogen SCC1 was significantly reduced by oxolinic acid and streptomycin in vitro assay, but not by validamycin A. In plant trials, strains EXTN-1 and BS07M controlled soft rot in Chinese cabbage, and there was a significant difference in disease severity when the antibiotics were applied to the plants drenched with the two biocontrol agents. Additional foliar applications of oxolinic acid and streptomycin reduced the disease irrespective of pre-drench treatment of the PGPRs. However, when the plants were pre-drenched with EXTN-1 followed by spray of validamycin A at recommended concentration, soft rot significantly reduced compared to untreated control. Similarly, strains EXTN-1 and BS07M significantly enhanced plant growth, but it did not show synergistic effect with additional spray of antibiotics. Populations of the EXTN-1 or BS07M in the rhizosphere of plants sprayed with antibiotics were significantly affected as compared to control. Taken together, our results suggest that the three antibiotics used for soft rot control in Chinese cabbage could affect bacterial mediated biocontrol and plant growth promoting activities. Therefore, combined treatment of the PGPRs and the commercial antibiotics should be carefully applied to sustain environmental friendly disease management.

Linear Correlation between Online Capacitance and Offline Biomass Measurement up to High Cell Densities in Escherichia coli Fermentations in a Pilot-Scale Pressurized Bioreactor

  • Knabben, Ingo;Regestein, Lars;Schauf, Julia;Steinbusch, Sven;Buchs, Jochen
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.204-211
    • /
    • 2011
  • To yield high concentrations of protein expressed by genetically modified Escherichia coli, it is important that the bacterial strains are cultivated to high cell density in industrial bioprocesses. Since the expressed target protein is mostly accumulated inside the E. coli cells, the cellular product formation can be directly correlated to the bacterial biomass concentration. The typical way to determine this concentration is to sample offline. Such manual sampling, however, wastes time and is not efficient for acquiring direct feedback to control a fedbatch fermentation. An E. coli K12-derived strain was cultivated to high cell density in a pressurized stirred bioreactor on a pilot scale, by detecting biomass concentration online using a capacitance probe. This E. coli strain was grown in pure minimal medium using two carbon sources (glucose and glycerol). By applying exponential feeding profiles corresponding to a constant specific growth rate, the E. coli culture grew under carbon-limited conditions to minimize overflow metabolites. A high linearity was found between capacitance and biomass concentration, whereby up to 85 g/L dry cell weight was measured. To validate the viability of the culture, the oxygen transfer rate (OTR) was determined online, yielding maximum values of 0.69 mol/l/h and 0.98mol/l/h by using glucose and glycerol as carbon sources, respectively. Consequently, online monitoring of biomass using a capacitance probe provides direct and fast information about the viable E. coli biomass generated under aerobic fermentation conditions at elevated headspace pressures.

Viable Bacterial Cell Patterning Using a Pulsed Jet Electrospray System

  • Chong, Eui-seok;Hwang, Gi Byung;Kim, Kyoungtae;Lee, Im-Soon;Han, Song Hee;Kim, Hyung Joo;Jung, Heehoon;Kim, Sung-Jin;Jung, Hyo Il;Lee, Byung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.381-385
    • /
    • 2015
  • In the present study, drop-on-demand two-dimensional patterning of unstained and stained bacterial cells on untreated clean wafers was newly conducted using an electrospray pulsed jet. We produced various spotted patterns of the cells on a silicon wafer by varying the experimental conditions, such as the frequency, flow rate, and translational speed of the electrospray system in a two-dimensional manner. Specifically, the electrospray's pulsed jet of cell solutions produced alphabetical patterns consisting of spots with a diameter of approximately $10{\mu}m$, each of which contained a single or a small number of viable bacteria. We tested the viability of the patterned cells using two visualization methods. This pattering technique is newly tested here and it has the potential to be applied in a variety of cell biology experiments.

Morphological aspect of the attached bacteria by the sterilization method of the ultrasonic scaling tip (소독멸균 방법에 따른 초음파 스케일링 팁에 부착된 세균의 양상)

  • Nam, Seoul-Hee;Kim, Yu-rin
    • Journal of Korean society of Dental Hygiene
    • /
    • v.15 no.4
    • /
    • pp.713-718
    • /
    • 2015
  • Objectives: The purpose of the study was to investigate the bacterial morphology attached on ultrasonic scaler tips using no cleansing solution, alcohol cotton, liquid chemical disinfecting agent, and autoclave method. Methods: Scaling tip was applied to the mouth and the ultrasonic scaler tips were assigned to four groups. Group 1 was control group with no cleansing solution. Group 2 was treated with alcohol cotton. Group 3 was treated with 2% green Y-Na solution in liquid chemical disinfecting agent, and Group 4 was sterilized by autoclave method. Live bacteria were observed by phase contrast microscopy. The scanning electron microscopy(SEM) revealed the morphological characteristics of scaler surface. The type of attached bacteria were analyzed using SPSS 21.0 program. The data were analyzed by one-way analysis of variance(ANOVA) and Tukey's post-hoc test. Results: The types of sterilization methods had influences on the bacterial viability. The numbers of cocci, bacilli, spiral form bacteria, and filamentous bacteria was observed in $89.00{\pm}3.60%$, $29.67{\pm}3.51%$, $3.33{\pm}0.57%$ and $1.67{\pm}0.57%$ in control group, $31.67{\pm}3.51%$, $63.33{\pm}4.04%$, $2.00{\pm}1.00%$ and $1.67{\pm}0.57%$ in alcohol cotton group, $69.67{\pm}4.50%$, $12.33{\pm}2.51%$, 0% and 0% in liquid chemical disinfecting agent group, and 0.0%, 0.0%, 0.0% and 0.0% in autoclave method group. The clean surface of ultrasonic scaler tip was shown on SEM by autoclave method. Conclusions: The most effective sterilization method of ultrasonic scaler tip was the autoclave method. Autoclave method is the most effective sterilization method and can reduce the cross-infection in the dental clinic.

Chitosan Based Silver Nanocomposites (CAgNCs) Display Antibacterial Effects against Vibrio ichthyoenteri

  • Beom, Seo Seung;Shin, Sang Yeop;Dananjaya, S.H.S.;De Silva, A.B.K.H.;Nikapitiya, Chamilani;Cho, Jongki;Park, Gun-Hoo;Oh, Chulhong;Kang, Do-Hyung;De Zoysa, Mahanama
    • Journal of Veterinary Clinics
    • /
    • v.34 no.4
    • /
    • pp.261-267
    • /
    • 2017
  • The aim of this study was to investigate the antibacterial properties of chitosan silver nanocomposites (CAgNCs) using pathogenic Vibrio ichthyoenteri as a bacterial model. Results of agar disc diffusion and turbidimetric assays showed that CAgNCs could inhibit the growth of V. ichthyoenteri in concentration dependent manner. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs were 75 and $125{\mu}g/mL$, respectively. Furthermore, CAgNCs treatment induced the reactive oxygen species (ROS) level in V. ichthyoenteri cells in concentration and time dependent manner, suggesting that it generates oxidative stress, leading to bacterial cell death. The field emission scanning electron microscope (FE-SEM) images of CAgNCs treated V. ichthyoenteri exhibited strong cell membrane damage than un-treated control bacteria. MTT assay results showed the highest cell viability (22%) at $75{\mu}g/mL$ of CAgNCs treated bacteria samples. The results from this study suggest that CAgNCs is a potential antibacterial agent to control fish pathogenic bacteria.

Antimicrobial Activity of Lavander and Rosemary Essential Oil Nanoemulsions (라벤더와 로즈마리 에센셜 오일 나노에멀션의 항균 활성)

  • Kim, Min-Soo;Lee, Kyoung-Won;Park, Eun-Jin
    • Korean journal of food and cookery science
    • /
    • v.33 no.3
    • /
    • pp.256-263
    • /
    • 2017
  • Purpose: Essential oils are secondary metabolites of herbs and have antibacterial activities against foodborne pathogens. However, their applications for food protection are limited due to the hydrophobic and volatile natures of essential oils. Methods: In this study, essential oil nanoemulsions of rosemary and lavender were formulated with non-ionic surfactant Tween 80 and water using ultrasonic emulsification, and their antibacterial effects were determined. Results: The antibacterial activities of nanoemulsions were evaluated against 12 strains of 10 bacterial species, and significant antibacterial effects were observed against four Gram-positive and four Gram-negative bacteria but not against Streptococcus mutans and Shigella sonnei. In the disc diffusion test, the diameter of the inhibition zone proportionally increased with the concentration of nanoemulsions. Using cell turbidity measurement, minimum bactericidal concentration (MBC) of the nanoemulsions, which is the lowest concentration reducing viability of the initial bacterial inoculum by ${\geq}99.9%$, was significantly higher than the minimum inhibitory concentration (MIC) of the nanoemulsions. The largest bactericidal effects of lavender and rosemary essential oil nanoemulsions were observed against S. enterica and S. aureus, respectively. Conclusion: Nanoemulsion technique could improve antibacterial activity of essential oil nanoemulsions by increasing the solubility and stability of essential oils. Our findings shed light on the potential use of essential oil nanoemulsions as an alternative to chemical sanitizers in food protection.

Identification of Protein Kinases by Anti-phosphoserine/Phosphothreonine/Phosphotyrosine Antibody Immunoaffinity Column Chromatographies in Streptomyces griseus. (Anti-Phosphoserine/Phosphothreonine/Phesphotyrosine Antibody Immunoaffinity Column Chromatography를 이용한 Streptomyces griseus의 인산화 단백질 동정)

  • Cheong, Yong-Hoon;Kim, Jong-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • Protein kinases play very important role for maintaining viability in prokaryote and eukaryote. The metabolism of prokaryotic cell is generally regulated by bacterial two-component regulatory systems that are composed of histidine and asparitic acid kinases, however, some eukaryotic signal transduction system such as, serine and threonine kinases, have been also found to be involved in the regulation of morphogenesis and physiological differentiation in Streptomyces. Streptomyces griseus, a streptomycin producer, was expected to have varlous types of eukaryotic-type serine/threonine protein kinases, controlling morphogenesis. Thus, many steps of chromatographies were applied to isolate serine and threonine kinases from S. griseus IFO13350. The immunoaffinity steps using anti-phosphoserine, anti-phosphothreonine, and anti-phosphotyrosine agarose column chramatographies were successfully introduced to identify eukaryotic protein kinases from S. griseus IFO13350. Eight proteins with the expected molecular weight of 14, 29, 31, 35, 40, 52, 56, and 60 kDa, were identified on SDS-PAGE, and the their kination activity was confirmed by nonradioactive protein kination assay using FITC-labeled peptide as the substrate.

Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium

  • Mechesso, Abraham F.;Quah, Yixian;Park, Seung-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Background: Invasive infections due to foodborne pathogens, including Salmonella enterica serovar Typhimurium, are prevalent and life-threatening. This study aimed to evaluate the effects of ginsenoside Rg3 (Rg3) on the adhesion, invasion, and intracellular survival of S. Typhimurium. Methods: The impacts of Rg3 on bacterial growth and host cell viability were determined using the time kill and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays, respectively. Gentamicin assay and confocal microscopic examination were undertaken to determine the effects of Rg3 on the adhesive and invasive abilities of S. Typhimurium to Caco-2 and RAW 264.7 cells. Quantitative reverse transcription polymerase chain reaction was performed to assess the expression of genes correlated with the adhesion, invasion, and virulence of S. Typhimurium. Results: Subinhibitory concentrations of Rg3 significantly reduced (p < 0.05) the adhesion, invasion, and intracellular survival of S. Typhimurium. Rg3 considerably reduced (p < 0.05) the bacterial motility as well as the release of nitrite from infected macrophages in a concentration-dependent manner. The expression of genes related to the adhesion, invasion, quorum sensing, and virulence of S. Typhimurium including cheY, hilA, OmpD, PrgK, rsgE, SdiA, and SipB was significantly reduced after Rg3 treatment. Besides, the compound downregulated rac-1 and Cdc-42 that are essential for actin remodeling and membrane ruffling, thereby facilitating Salmonella entry into host cells. This report is the first to describe the effects of Rg3 on "trigger" entry mechanism and intracellular survival S. Typhimurium. Conclusion: Rg3 could be considered as a supplement agent to prevent S. Typhimurium infection.

Two Sjogren syndrome-associated oral bacteria, Prevotella melaninogenica and Rothia mucilaginosa, induce the upregulation of major histocompatibility complex class I and hypoxia-associated cell death, respectively, in human salivary gland cells

  • Lee, Jaewon;Jeon, Sumin;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.190-199
    • /
    • 2021
  • Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.

Mechanism underlying NO-induced apoptosis in human gingival fibroblasts

  • Hwang, In-Nam;Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Kim, Kang-Moon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Nitric oxide (NO) acts as an intracellular messenger at the physiological level but can be cytotoxic at high concentrations. The cells within periodontal tissues, such as gingival and periodontal fibroblasts, contain nitric oxide syntheses and produce high concentrations of NO when exposed to bacterial lipopolysaccharides and cytokines. However, the cellular mechanisms underlying NO-induced cytotoxicity in periodontal tissues are unclear at present. In our current study, we examined the NO-induced cytotoxic mechanisms in human gingival fibroblasts (HGF). Cell viability and the levels of reactive oxygen species (ROS) were determined using a MTT assay and a fluorescent spectrometer, respectively. The morphological changes in the cells were examined by Diff-Quick staining. Expression of the Bcl-2 family and Fas was determined by RT-PCR or western blotting. The activity of caspase-3, -8 and -9 was assessed using a spectrophotometer. Sodium nitroprusside (SNP), a NO donor, decreased the cell viability of the HGF cells in a dose- and time-dependent manner. SNP enhanced the production of ROS, which was ameliorated by NAC, a free radical scavenger. ODQ, a soluble guanylate cyclase inhibitor, did not block the SNP-induced decrease in cell viability. SNP also caused apoptotic morphological changes, including cell shrinkage, chromatin condensation, and DNA fragmentation. The expression of Bax, a member of the proapoptotic Bcl-2 family, was upregulated in the SNP-treated HGF cells, whereas the expression of Bcl-2, a member of the anti-apoptotic Bcl-2 family, was downregulated. SNP augmented the release of cytochrome c from the mitochondria into the cytosol and enhanced the activity of caspase-8, -9, and -3. SNP also upregulated Fas, a component of the death receptor assembly. These results suggest that NO induces apoptosis in human gingival fibroblast via ROS and the Bcl-2 family through both mitochondrial- and death receptor-mediated pathways. Our data also indicate that the cyclic GMP pathway is not involved in NO-induced apoptosis.