• Title/Summary/Keyword: bacterial viability

Search Result 183, Processing Time 0.025 seconds

Antimicrobial Activity of Vaccinium macrocarpon (Cranberry) Produced Proanthocyanidin (PAC) on the Growth and Adhesion Properties of Staphylococcus aureus

  • Hui, Jonathan;Choy, John;Suwandaratne, Sid P.;Shervill, Jenna;Gan, Bing S.;Howard, Jeffrey C.;Reid, Gregor
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • Cranberries have long been used by lay people to relieve the symptoms of urinary tract infections. Recent research has determined that the component of cranberry called proanthocyanidin (PAC) is the primary mechanism for inhibiting P-fimbriated E.coli adhesion to uroepithelial cells in vitro. A series of experiments were performed to determine the effects of PAC on growth and adhesion of uropathogenic E. coli and Staphylococcus aureus to urinary catheter material. The results showed that PAC-inhibited binding of Gram positive S. aureus to collagen coated surfaces and significantly decreased the growth of these bacteria. P-fimbriated E.coli did not bind well to the biomaterial and their growth was unaffected by the cranberry extract with the exception of some loss in viability at 1000 $\mu\textrm{g}$/mL after 5 to 18 hours of exposure. This is the first report of the potential for cranberries to interfere with the adhesion and growth of S. aureus, a multi-drug resistant organisms responsible for morbidity and mortality especially in hospitalized patients.

DNA Repair Activity of Human rpS3 is Operative to Genotoxic Damage in Bacteria

  • JANG CHANG-YOUNG;LEE JAE YUNG;KIM JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.484-490
    • /
    • 2005
  • Human ribosomal protein S3 (rpS3), which has a DNA repair endonuclease activity, is a multifunctional protein. This protein is involved in DNA repair, translation, and apoptosis. In particular, rpS3 has a lyase activity, which cleaves the phosphodiester bond of damaged sites such as cyclobutane pyrimidine dimers and AP sites. Here, using deletion analysis, we identified that the repair endonuclease domain resides in the C-terminal region (165-243 aa) of rpS3. We also found that ectopic expression of GST-rpS3 in bacterial strain BL21 promoted the resistance of these cells to ultraviolet (UV) radiation and hydrogen peroxide ($H_{2}O_{2}$) treatment. The repair domain of rpS3 was sufficient to exhibit the resistance to UV irradiation and recover cell growth and viability, showing that the repair activity of rpS3 is responsible for the resistance to UV irradiation. Our study suggests that rpS3 is able to process DNA damage in bacteria via its repair domain, showing the resistance to genotoxic stress. This implies that rpS3-like activity could be operative in bacteria.

The Extract of Pseudomonas aeruginosa Induces the Apoptosis of the Human Colorectal Cancer Cell Line, HCT 116 Cells, via Mitochondrial Pathway

  • Yang, Eun-Ju;Chang, Jeong-Hyun
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • Although there are many potential cytotoxic molecules released from bacteria, the role of these molecules on the apoptosis of various cancer cells is not well understood. Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative, aerobic and rod-shaped bacterium, and has a number of virulence factors. To understand the cytotoxic effect of bacterial extracts on the colorectal cancer cell line, HCT 116 cells, we examined alteration of the cell viability, proliferation, cell cycle and apoptosis of HCT 116 cells after treatment with extract of P. aeruginosa (PaE). These cytotoxicity of PaE occurred in a time- and a dose-dependent manners. In addition, PaE arrested the cell cycle of HCT 116 cell in a time-dependent manner. PaE inhibited the protein levels of Bcl-2 and induced the release of cytochrome c from mitochondria of HCT 116 cells. The decrease of procaspase-3 was induced by the treatment of PaE. These results indicate that PaE has a cytotoxicity in HCT 116 cells via the induction of apoptosis associated with mitochondrial pathway. Therefore, PaE may used as the potential target for the treatment of colorectal cancer.

Characterization and Inhibitory Activity of Lactobacillus plantarum MG989 and Lactobacillus fermentum MG901 Isolated from Vaginal Microbiota of Korean Women against Gardnerella vaginalis and Candida albicans (한국여성의 질에서 분리한 Lactobacillus plantarum MG989와 Lactobacillus fermentum MG901의 Gardnerella vaginalis와 Candida albicans에 대한 억제효과 및 특성 규명)

  • Paek, Nam-Soo;Lee, Youn Yeop;Han, Seul Haw;Kang, Chang-Ho;So, Jae-Seong
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Vaginitis, also known as vaginal infection and vulvovaginitis, is an inflammation of the vagina and possibly vulva. The three main kinds of vaginitis are bacterial vaginosis, vaginal candidiasis, and trichomoniasis. The purpose of this study was to characterize Lactobacillus plantarum MG989 and L. fermentum MG901 isolated from the vaginas of healthy Korean women in terms of their inhibitory activity against the vaginitis associated pathogens such as Gardnerella vaginalis and Candida albicans. Co-culture experiments showed that the two Lactobacillus strains MG989 and MG901 significantly reduced the viability of G. vaginalis and C. albicans. Also, the two strains were resistant to bile acid up to 1% and their autoaggregation rates were as high as 83.33%. Further studies are underway to demonstrate that the two strains can be applied as pharmaceutical agents for recovering healthy vaginal ecosystem.

Effects of Hahella chejuensis-Derived Prodigiosin on UV-Induced ROS Production, Inflammation and Cytotoxicity in HaCaT Human Skin Keratinocytes

  • Lee, Jieun;Kim, Hyun Ju;Lee, Sang Jun;Lee, Moo-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.475-482
    • /
    • 2021
  • Prodigiosins, which are natural tripyrrole red pigments and synthetic derivatives, reportedly have multiple biological effects mainly on various types of cancer cells. However, the effects of bacterial prodigiosin on non-cancerous HaCaT human skin keratinocytes have not been reported. Therefore, the present study aimed to investigate the functional activities of prodigiosin derived from cultures of the bacterium Hahella chejuensis in HaCaT cells. Cell viability, the cell proliferation rate, and reactive oxygen species (ROS) production in vitro were assayed following treatment of HaCaT cells with prodigiosin. Prodigiosin did not cause cytotoxicity and notably increased proliferation of HaCaT cells. Furthermore, prodigiosin reduced ultraviolet (UV) irradiation-induced ROS production and the inflammatory response in HaCaT cells. More importantly, prodigiosin reduced matrix metalloproteinase-9 expression and increased collagen synthesis in UV-irradiated HaCaT cells, demonstrating that it elicits anti-aging effects. In conclusion, our results reveal that H. chejuensis-derived prodigiosin is a potential natural product to develop functional cosmetic ingredients.

Effect of Spore-Forming Probiotics on the Poultry Production: A Review

  • Khalid, Anam;Khalid, Fatima;Mahreen, Nida;Hussain, Syed Makhdoom;Shahzad, Muhammad Mudassar;Khan, Salman;Wang, Zaigui
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.968-980
    • /
    • 2022
  • Due to the bad aspects associated with the use of antibiotics, the pressure on poultry production prompted the efforts to find out suitable growth-promoting and disease-preventing alternatives. Although many cost-effective alternatives have been developed, currently, one of the most auspicious alternatives for poultry feed is spore-forming probiotics, which can exert more beneficial effects as compared to normal probiotics, because of their ability to withstand the harsh external and internal conditions which result in increased viability. Many studies have already used spore-forming probiotics to improve different parameters of poultry production. Our laboratory has recently isolated a spore-forming bacterial strain, which has the potential to be used as a probiotic. So, to provide a detailed understanding, the current review aimed to collect valuable references to describe the mechanism of action of spore-forming probiotics and their effect on all the key aspects of poultry production.

Use of Vegetable Waste as a Culture Medium Ingredient Improves the Antimicrobial and Immunomodulatory Activities of Lactiplantibacillus plantarum WiKim0125 Isolated from Kimchi

  • Seul-Gi Jeong;Ho Myeong Kim;Moeun Lee ;Jung Eun Yang;Hae Woong Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.75-82
    • /
    • 2023
  • Lactic acid bacteria (LAB) isolated from kimchi (a traditional Korean dish typically made of fermented cabbage) can provide various health benefits, including anti-obesity, antioxidant, antiinflammatory, anticancer, and antimicrobial effects. In this study, we examined the antimicrobial and immunomodulatory effects of Lactiplantibacillus plantarum WiKim0125 cultured in de Man, Rogosa, and Sharpe (MRS) medium containing vegetable waste. Live bacterial cells were eliminated via supernatant filtration or heat treatment. The cell-free supernatant (CFS) obtained from culture broth containing kimchi cabbage waste (KCW), cabbage waste (CW), or onion waste (OW) showed significantly higher antimicrobial activity against skin pathogens (Propionibacterium acnes and Staphylococcus aureus) and foodborne pathogens (Escherichia coli and Salmonella typhimurium), with inhibition zones ranging between 4.4 and 8.5 mm, compared to that in conventional MRS medium (4.0-7.3 mm). In lipopolysaccharide-stimulated RAW264.7 cells, both supernatant and heat-inactivated Lb. plantarum WiKim0125 from culture media containing KCW and CW suppressed the production of inflammatory cytokines (72.8% and 49.6%, respectively) and nitric oxide (62.2% and 66.7%, respectively) without affecting cell viability. These results indicate that vegetable waste can potentially increase the antimicrobial and immunoregulatory potency of LAB while presenting a molecular basis for applying postbiotics to health products.

Antibacterial Efficacy of Dental Sealant Containing Phytoncide

  • Song-Yi Yang;Myung-Jin Lee
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.389-395
    • /
    • 2023
  • Background: Dental caries prevention is a key research focus in dentistry, requiring advancements in the formulation of dental sealants. This study investigated the physical and antibacterial attributes of dental sealant enriched with phytoncide. Methods: Phytoncide was mixed with a commercially available dental sealant (Clinpro) at concentrations of 0 (control), 1.5%, 3%, and 4.5% by weight (wt%). The flexural strength, curing depth, and wettability of the dental sealant were measured. Antibacterial properties against Streptococcus mutans were evaluated through the enumeration of colony-forming units. Statistical analyses employed one-way variance analysis followed by Tukey's test (p<0.05). Results: The dental sealant containing 3% phytoncide showed no significant difference in flexural strength and curing depth compared with that in the control group (p>0.05). The flexural strength and curing depth decreased with increasing phytoncide content and significantly differed in sealant containing 4.5 wt% phytoncide (p<0.05). Wettability did not differ between the experimental and control groups (p>0.05). The antibacterial properties of the sealant containing 1.5% phytoncide were the same as those of the control group (p>0.05). The bacterial viability was significantly reduced in groups containing 3% and 4.5% phytoncide compared with that in the control group (p<0.05). Conclusion: Dental sealants incorporating phytoncide have a promising potential as antibacterial dental materials.

Efficacy of Elaeagnus umbellata leaves on prevention of cadmium-induced toxicity in HepG2 cells

  • Jae-Yeul Lee;Seun-Ah Yang;Won-Bin Bae
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.797-810
    • /
    • 2023
  • Elaeagnus umbellata leaves have been reported to suppress inflammation, allergic responses, lung cancer proliferation and oral bacterial growth. Cadmium (Cd) is a heavy metal that has been found to cause many toxicities, including liver toxicity. The aim of this study was to evaluate the capacity of 70% ethanol extract of E. umbellata leaves (EUL) to protect human hepatocytes from Cd toxicity. After exposure of HepG2 cells to Cd at 10 𝜇M for 24 h, cell viability, expression levels of apoptosis- and antioxidant-related proteins, reactive oxygen species (ROS) accumulation and Cd uptake were assessed. EUL protected HepG2 cells from Cd-induced apoptosis as determined by MTT assay. A decrease in caspase-3 and p-p53 protein levels was observed in cells pretreated with EUL prior to Cd exposure. Furthermore, the Cd-induced increase in intracellular DCF fluorescence was attenuated by EUL, indicating that the Cd-induced apoptosis preventing effect was associated with the suppression of ROS accumulation. Moreover, EUL's effects on the inhibition of p38, JNK, and AKT phosphorylation also appear to be associated with protection against Cd toxicity. Moreover, EUL upregulated Cd-depressed expression of Nrf2, HO-1, catalase, and MT-1,2 proteins, suggesting that Cd uptake-induced apoptosis in HepG2 cells may be inhibited by EUL's antioxidative potential.

Food Waste Composting by Using an Inoculum-Mixture Containing New Facultative Anaerobic Bacteria (신규 통성혐기성 세균으로 제조한 발효흙에 의한 음식물 쓰레기의 퇴비화)

  • Hwang, Kyo-Yeol;Lee, Jae-Yeon;Kim, Keun;Sung, Su-Il;Han, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Four newly isolated bacteria from soil were used to manufacture microbial inoculum to compost food waste. The bacteria, GM103, V25, V31, and V35, were identified as Bacillus licheniformis, B. subtilis, B. stearothermophilius, and B, subtilis, respectively. The bacterial strains were efficient to degrade protein and starch and also able to inhibit the growth of plant pathogenic fungus Rhizopus stronifer. The GM103 showed distinct capability in degrading starch, but grow only aerobically. The other three bacterial strains. V25, V31, and V35, could grow both aerobically as well as anaerobically, in 10%(w/v) salt, at $50^{\circ}C$, and had good viability and survival rate in soil. These characteristics of the bacterial strains are very adquate in Korean food composting containing high concentration of salt, especially at home. By mixing the 4 bacterial culture broth with molasses, beet pulp, zeolite, The bacterial inoculum for food waste composting-BIOTOP-CLEAN-was made. The performance of food waste composting by the BIOTOP-CLEAN was compared with that by control(not treated) and HS(other demestic company's inoculum product for food waste composting). The maximum temperature of the food waste during the composting with the BIOTOP-CLEAN was $50^{\circ}C$, while those of the control and HS were $30^{\circ}C$ and $35^{\circ}C$, respectively. The BIOTOP-CLEAN gave the good smell and showed dark brown color, while the control gave bad smell and HS gave less bad smell. These indicates that the food waste composting by the BIOTOP-CLEAN had been well accomplished. The culture broth of V25, V31, V35 were sparyed to the plants of tomato, chinese cabbage, raddish, red pepper every month and the spraying the culture broth to these plant significantly improved the production yield of the crops, due to the control effect of the bacterial strains against the plant pathogens.

  • PDF