DOI QR코드

DOI QR Code

Antibacterial Efficacy of Dental Sealant Containing Phytoncide

  • Song-Yi Yang (Department of Dental Hygiene, Konyang University) ;
  • Myung-Jin Lee (Department of Dental Hygiene, Division of Health Science, Baekseok University)
  • Received : 2023.12.06
  • Accepted : 2023.12.19
  • Published : 2023.12.31

Abstract

Background: Dental caries prevention is a key research focus in dentistry, requiring advancements in the formulation of dental sealants. This study investigated the physical and antibacterial attributes of dental sealant enriched with phytoncide. Methods: Phytoncide was mixed with a commercially available dental sealant (Clinpro) at concentrations of 0 (control), 1.5%, 3%, and 4.5% by weight (wt%). The flexural strength, curing depth, and wettability of the dental sealant were measured. Antibacterial properties against Streptococcus mutans were evaluated through the enumeration of colony-forming units. Statistical analyses employed one-way variance analysis followed by Tukey's test (p<0.05). Results: The dental sealant containing 3% phytoncide showed no significant difference in flexural strength and curing depth compared with that in the control group (p>0.05). The flexural strength and curing depth decreased with increasing phytoncide content and significantly differed in sealant containing 4.5 wt% phytoncide (p<0.05). Wettability did not differ between the experimental and control groups (p>0.05). The antibacterial properties of the sealant containing 1.5% phytoncide were the same as those of the control group (p>0.05). The bacterial viability was significantly reduced in groups containing 3% and 4.5% phytoncide compared with that in the control group (p<0.05). Conclusion: Dental sealants incorporating phytoncide have a promising potential as antibacterial dental materials.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (RS-2023-00211180).

References

  1. Wang Y, Hua H, Li W, Wang R, Jiang X, Zhu M: Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids. J Dent 80: 23-29, 2019. https://doi.org/10.1016/j.jdent.2018.11.002
  2. Beigi Burujeny S, Atai M, Yeganeh H: Assessments of antibacterial and physico-mechanical properties for dental materials with chemically anchored quaternary ammonium moieties: thiol-ene-methacrylate vs. conventional methacrylate system. Dent Mater 31: 244-261, 2015. https://doi.org/10.1016/j.dental.2014.12.014
  3. Lee MJ, Kwon JS, Jiang HB, Choi EH, Park G, Kim KM: The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure. Sci Rep 9: 1938, 2019. https://doi.org/10.1038/s41598-019-39414-9
  4. Lee MJ, Kwon JS, Kim JY, et al.: Bioactive resin-based composite with surface pre-reacted glass-ionomer filler and zwitterionic material to prevent the formation of multi-species biofilm. Dent Mater 35: 1331-1341, 2019. https://doi.org/10.1016/j.dental.2019.06.004
  5. Ahovuo-Saloranta A, Forss H, Walsh T, Nordblad A, Makela M, Worthington HV: Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database Syst Rev 7: CD001830, 2017. https://doi.org/10.1002/14651858.CD001830.pub5
  6. Ozgur B, Kargin ST, Olmez MS: Clinical evaluation of giomer- and resin-based fissure sealants on permanent molars affected by molar-incisor hypomineralization: a randomized clinical trial. BMC Oral Health 22: 275, 2022. https://doi.org/10.1186/s12903-022-02298-9
  7. Tran P, Kopel J, Ray C, Reed J, Reid TW: Organo-selenium containing dental sealant inhibits biofilm formation by oral bacteria. Dent Mater 38: 848-857, 2022. https://doi.org/10.1016/j.dental.2022.04.006
  8. Salma RS, AbdElfatah OM: Effect of a bioactive pit and fissure sealant on demineralized human enamel: in vitro study. BMC Oral Health 22: 569, 2022. https://doi.org/10.1186/s12903-022-02617-0
  9. Boaro LCC, Campos LM, Varca GHC, et al.: Antibacterial resin-based composite containing chlorhexidine for dental applications. Dent Mater 35: 909-918, 2019. https://doi.org/10.1016/j.dental.2019.03.004
  10. Chen L, Suh BI, Yang J: Antibacterial dental restorative materials: a review. Am J Dent 31: 6B-12B, 2018.
  11. Lee IC, Kim BH, Kim MK: Investigations of Samwhang-sasimtang extracts on in vitro vivo. Lab Anim Res 26: 15-20, 2010. https://doi.org/10.5625/lar.2010.26.1.15
  12. Jeong JB, Park JH, Lee HK, et al.: Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food Chem Toxicol 47: 525-529, 2009. https://doi.org/10.1016/j.fct.2008.11.039
  13. Jung DS, Lee NH: Antimicrobial activity of the aerial part (Leaf and Stem) extracts of Cnidium officinale Makino, a Korean medicinal herb. Korean J Microbiol Biotechnol 35: 30-35, 2007.
  14. Hong H, An JC, de La Cruz JF, Hwang SG: Cnidium officinale Makino extract induces apoptosis through activation of caspase-3 and p53 in human liver cancer HepG2 cells. Exp Ther Med 14: 3191-3197, 2017. https://doi.org/10.3892/etm.2017.4916
  15. Lee IC, Kim MK: Antioxidant, Antimicrobial and antiinflammatory of mixed medicinal herb extract. Korea J Herbol 30: 51-58, 2015. https://doi.org/10.6116/kjh.2015.30.5.51
  16. Roh JY, Kim KR: Antimicrobial activity of Korean propolis extracts on oral pathogenic microorganisms. J Dent Hyg Sci 18: 18-23, 2018. https://doi.org/10.17135/jdhs.2018.18.1.18
  17. Weng Y, Howard L, Guo X, Chong VJ, Gregory RL, Xie D: A novel antibacterial resin composite for improved dental restoratives. J Mater Sci Mater Med 23: 1553-1561, 2012. https://doi.org/10.1007/s10856-012-4629-z
  18. Carson CF, Mee BJ, Riley TV: Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46: 1914-1920, 2002. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
  19. Kang SK, Shin MK, Auh QS, Chun YH, Hong JP: Antibacterial effect on oral pathogenic bacteria of phytoncide from Chamaecyparis obtuse. J Oral Med Pain 32: 45-55, 2007.
  20. Kim MJ, Jung US, Lee JS, et al.: Effects of dietary phytoncides extracted from Korean pine (Pinus koraiensis) cone on performance, egg quality, gut microflora, and immune response in laying hens. J Anim Physiol Anim Nutr (Berl) 102: 1220-1231, 2018. https://doi.org/10.1111/jpn.12934
  21. Lee MJ, Kim MJ, Oh SH, Kwon JS: Novel dental poly (methyl methacrylate) containing phytoncide for antifungal effect and inhibition of oral multispecies biofilm. Materials (Basel) 13: 371, 2020. https://doi.org/10.3390/ma13020371
  22. Kim SQ, Shin MK, AuH QS, Lee JY, Hong JP, Chun YH: Effect of phytoncide on Porphyromonas gingivalis. J Oral Med Pain 32: 137-150, 2007.
  23. Lee MJ, Mangal U, Kim SJ, et al.: Improvement in the microbial resistance of resin-based dental sealant by sulfobetaine methacrylate incorporation. Polymers (Basel) 12: 1716, 2020. https://doi.org/10.3390/polym12081716
  24. Elawsya ME, Montaser MA, El-Wassefy NA, Zaghloul NM: Depth of cure of dual- and light-cure bulk-fill resin composites. Am J Dent 35: 185-190, 2022.
  25. Hahnel S, Wastl DS, Schneider-Feyrer S, et al.: Streptococcus mutans biofilm formation and release of fluoride from experimental resin-based composites depending on surface treatment and S-PRG filler particle fraction. J Adhes Dent 16: 313-321, 2014. https://doi.org/10.3290/j.jad.a31800
  26. Kitagawa H, Miki-Oka S, Mayanagi G, Abiko Y, Takahashi N, Imazato S: Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism. J Dent 70: 92-96, 2018. https://doi.org/10.1016/j.jdent.2017.12.017
  27. Abe T, Hisama M, Tanimoto S, Shibayama H, Mihara Y, Nomura M: Antioxidant effects and antimicrobial activites of phytoncide. Biocontrol Sci 13: 23-27, 2008. https://doi.org/10.4265/bio.13.23
  28. Kim MJ, Lee MG, Lee JH, Jeon YM, Yoo HJ: Antibacterial activity of phytoncide on oral biofilm. J Korean Acad Oral Health 45: 204-209, 2021. https://doi.org/10.11149/jkaoh.2021.45.4.204