• Title/Summary/Keyword: bacterial toxins

Search Result 61, Processing Time 0.025 seconds

Substrate specificity of bacterial endoribonuclease toxins

  • Han, Yoontak;Lee, Eun-Jin
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.611-621
    • /
    • 2020
  • Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.

Cloning, Sequencing, and Characterization of Enterotoxin Pathogenicity Islet from Bacteroides fragilis 419

  • Rhie, Gi-Eun;Chung, Gyung-Tae;Lee, Yong-Jin;Sung, Won-Keun;Oh, Hee-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.86-90
    • /
    • 2000
  • We have earlier reported on the cloning and identification of bft-k from an enterotoxigenic strain of Bacteroides fragilis 419, which was isolated from the blood of a Korean patient who suffered from systemic infections [4,5]. The bft-k gene encodes a 397-amino-acids metalloprotease enterotoxin, and the protein has been identified as a new isoform of B. fragilis enterotoxins (BFTs), which are cytopathic to intestinal epithelial cells to induce fluid secretion and tissue damage in ligated intestinal loops [4, 6, 18, 20]. This report describes the cloning and sequencing of the enterotoxin pahogenicity islet of B. fragilis 419 which contains the bft-k gene. the cloned enterotoxin pathogenicity islet was found to have 6,045 bp in length and to contain 120bp direct repeats near its end. In the pathogenicity islet, in addition to the BFR-K, two putative open reading frames (ORFs) were identified; (1) the t-3 gene encoding a 396-amino-acids protein of a putative metalloprotease; (2) the third gene encoding an ORF of a 59-amino-acids protein, whose function has not yet beenn characterized. The expression of the t-3 gene in B. fragilis 419 was verified by western blot analysis.

  • PDF

Aloe-Emodin-Mediated Photodynamic Therapy Attenuates Sepsis-Associated Toxins in Selected Gram-Positive Bacteria In Vitro

  • Otieno, Woodvine;Liu, Chengcheng;Ji, Yanhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1200-1209
    • /
    • 2021
  • Sepsis is an acute inflammatory response that leads to life-threatening complications if not quickly and adequately treated. Cytolysin, hemolysin, and pneumolysin are toxins produced by gram-positive bacteria and are responsible for resistance to antimicrobial drugs, cause virulence and lead to sepsis. This work assessed the effects of aloe-emodin (AE) and photodynamic therapy (PDT) on sepsis-associated gram-positive bacterial toxins. Standard and antibiotic-resistant Enterococcus faecalis, Staphylococcus aureus, and Streptococcus pneumonia bacterial strains were cultured in the dark with varying AE concentrations and later irradiated with 72 J/cm-2 light. Colony and biofilm formation was determined. CCK-8, Griess reagent reaction, and ELISA assays were done on bacteria-infected RAW264.7 cells to determine the cell viability, NO, and IL-1β and IL-6 pro-inflammatory cytokines responses, respectively. Hemolysis and western blot assays were done to determine the effect of treatment on hemolysis activity and sepsis-associated toxins expressions. AE-mediated PDT reduced bacterial survival in a dose-dependent manner with 32 ㎍/ml of AE almost eliminating their survival. Cell proliferation, NO, IL-1β, and IL-6 cytokines production were also significantly downregulated. Further, the hemolytic activities and expressions of cytolysin, hemolysin, and pneumolysin were significantly reduced following AE-mediated PDT. In conclusion, combined use of AE and light (435 ± 10 nm) inactivates MRSA, S. aureus (ATCC 29213), S. pneumoniae (ATCC 49619), MDR-S. pneumoniae, E. faecalis (ATCC 29212), and VRE (ATCC 51299) in an AE-dose dependent manner. AE and light are also effective in reducing biofilm formations, suppressing pro-inflammatory cytokines, hemolytic activities, and inhibiting the expressions of toxins that cause sepsis.

Biotoxins for Cancer Therapy

  • Liu, Cui-Cui;Yang, Hao;Zhang, Ling-Ling;Zhang, Qian;Chen, Bo;Wang, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4753-4758
    • /
    • 2014
  • In recent times, a number of studies have provided evidence that biotoxins present great potential as antitumor agents, such as snake venom, bee venom, some bacteria toxins and plant toxins, and thus could be used as chemotherapeutic agents against tumors. The biodiversity of venoms and toxins make them a unique source from which novel anticancer agent may be developed. Biotoxins, also known as natural toxins, include toxic substances produced by plants, animals and microorganisms. Here, we systematically list representative biological toxins that have antitumor properties, involving animal toxins, plant toxins, mycotoxins as well as bacterial toxins. In this review, we summarize the current knowledge involving biotoxins and the active compounds that have anti-cancer activity to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. We also show insights into the molecular and functional evolution of biotoxins.

Expression of Mosquitocidal Bacillus sphaericus Binary Toxin and B. thuringiensis cry11B Genes in B. thuringiensis 407

  • Park, Hyun-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.185-189
    • /
    • 2001
  • Wild type Bacilus thuringiensis subsp. israelensis and B. sphaericus toxins have been used separately as active in ingredients for bacterial insecticides to control mosquito larvae due to their comparable toxicity to chemical insecticides. Cry11B, recently cloned from B. thuringiensis subsp. jegathesan, shows higher toxicity against three major species of mosquito larvae than Cry11A, one of the major component of B. thuringiensis subsp. israelensis inclusion body. To determine whether the combination of cry11B and B. sphaericus binary toxins is as toxic as B. thuringiensis subsp. israelensis parental strain, cry11B and B. sphaericus binary toxins genes were co-expressed as an operon using cytlA promoters/STAB-SD hybrid expression system in B. thuringiensis subsp. israelensis acrystalliferous strain 4Q7. However, unexpectedly, B. sphaericus binary toxins were barely produced, whereas relatively large amount of Cry11B was produced. When this strain was grown in four different media, NB+G and Peptonized Milk produced more toxin proteins and spores per unit of media than GYS and G-Tris. Toxicity of this strain against fourth instar Culex quinquefasciatus was ranged from of 8.3 to 45.7 ng/ml, with NB+G culture being the highest, and GYS culture was the lowest.

  • PDF

Suppression of green mold disease on oak mushroom cultivation by antifungal peptides (항진균성 펩티드에 의한 표고버섯 푸른곰팡이병의 억제)

  • Lee, Hyoung-Jin;Yun, Yeong-Bae;Huh, Jeong-Hoon;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.149-153
    • /
    • 2017
  • Contamination and growth of Trichoderma, a green mold, on the oak log and wooden chip or sawdust media can severely inhibit the growth of oak mushroom. Chemicals including pesticides and antibiotics are generally not allowed for the control of green mold disease during mushroom cultivation. In this study, bacterial pathogens causing blotch disease on the oyster mushrooms were isolated and their peptide toxins were purified for the control of green mold disease. Strains of Pseudomonas tolaasii secret various peptide toxins, tolaasin and its structural analogues, having antifungal activities. These peptides have shown no effects on the growth of oak mushrooms. When the peptide toxins were applied to the green mold, Trichoderma harzianum H1, they inhibited the growth of green molds. Among the 20 strains of peptide-forming P. tolaasii, strong, moderate, and weak antifungal activities were measured from 8, 5, and 7 strains, respectively. During oak mushroom cultivation, bacterial culture supernatants containing the peptide toxins were sprayed on the aerial mycelia of green molds grown on the surface of sawdust media. The culture supernatants were able to suppress the fungal growth of green molds while no effect was observed on the mushroom growth and production. They changed the color of molds from white aerial mycelium into yellowish dried scab, representing the powerful anti-fungal and sterilization activities of peptide toxins.

Increase in antifungal activity by the combination of tolaasin and its analogue peptides (톨라신류 펩티드 혼합처리에 의한 항진균 활성의 증가)

  • Yun, Yeong-Bae;Lee, Hyoung-Jin;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.69-73
    • /
    • 2018
  • Oak mushroom (Lentinus edodes) is cultivated by using oak logs and sawdust medium. Green mold (Trichoderma) infection on these media severely suppresses the growth of oak mushroom. Usages of antibiotics and chemicals are not generally allowed to control of green mold since the mushroom is a fresh food. Tolaasin and its analogues, peptide toxins secreted by Pseudomonas tolaasii, have the antifungal activity and they have been successful to control the green mold disease. When the green mold, Trichoderma harzianum H1, was cultured in the presence of these toxins, the growth of fungus was effectively suppressed. In sawdust media, when the bacterial culture supernatants were sprayed on the aerial hyphae of green molds, the fungal growth was completely suppressed. Particularly, the antifungal activity was greatly increased by the combined culture extracts of P. tolaasii 6264 and HK11 strains. Therefore, these bacterial strains and their peptide toxins were able to suppress the growth of green molds and these can be good candidates to prevent from Trichoderma disease in oak mushroom cultivation.

Detection of Cytolethal Distending Toxin and Other Virulence Characteristics of Enteropathogenic Escherichia coli Isolates from Diarrheal Patients in Republic of Korea

  • Kim, Jong-Hyun;Kim, Jong-Chul;Choo, Yun-Ae;Jang, Hyun-Chul;Choi, Yeon-Hwa;Chung, Jae-Keun;Cho, Seung-Hak;Park, Mi-Seon;Lee, Bok-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.525-529
    • /
    • 2009
  • Cytolethal distending toxins (CDTs) represent an emerging family of newly described bacterial products that are produced by a number of pathogens. The genes encoding these toxins have been identified as a cluster of three adjacent genes, cdtA, cdtB, and cdtC, plus 5 cdt genetic variants, designated as cdt-I, cdt-II, cdt-III, cdt-IV, and cdt-V, have been identified to date. In this study, a general multiplex PCR system designed to detect Escherichia coli cdts was applied to investigate the presence of cdt genes among isolates. As a result, among 366 E. coli strains, 2.7% were found to carry the cdtB gene. In addition, the use of type-specific primers revealed the presence of cdt-I, cdtIV, and cdt-V types of the cdt gene, yet no cdt-II or cdt-III strains. The presence of other virulence genes (stxl, stx2, eae, bfp, espA, espB, and espD) was also investigated using a PCR assay. Among the 10 cdtB gene-positive strains, 8 were identified as COT-producing typical enteropathogenic E. coli (EPEC) strains ($eae^+$, $bfp^+$), whereas 2 were identified as CDT-producing atypical EPEC strains ($eae^+$, $bfp^-$). When comparing the cytotoxic activity of the CDT-producing typical and atypical EPEC strains, the CDT-producing atypical EPEC strains appeared to be less toxic than the CDT-producing typical EPEC strains.

p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

  • Hyun, Hye Sun;Paik, Kyung Hoon;Cho, Hee Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.4
    • /
    • pp.159-164
    • /
    • 2013
  • Purpose: Indoxyl sulfate and p-cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p-cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. Methods: We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p-cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p-cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. Results: The baseline serum levels of indoxyl sulfate and p-cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p-cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. Conclusion: The levels of the uremic toxins p-cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by probiotics on the reduction of uremic toxins in pediatric dialysis patients. Therefore, studies for other medical intervention to reduce uremic toxins are also necessary in pediatric patients on dialysis.

Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications (박테리아의 toxin-antitoxin system과 생명공학기술 응용)

  • Kim, Yoonji;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.265-274
    • /
    • 2016
  • Toxin-antitoxin (TA) systems are ubiquitous genetic modules that are evolutionally conserved in bacteria and archaea. TA systems composed of an intracellular toxin and its antidote (antitoxin) are currently classified into five types. Commonly, activation of toxins under stress conditions inhibits diverse cellular processes and consequently induces cell death or reversible growth inhibition. These effects of toxins play various physiological roles in such as regulation of gene expression, growth control (stress response), programmed cell arrest, persister cells, programmed cell death, phage protection, stabilization of mobile genetic elements or postsegregational killing of plasmid-free cells. Accordingly, bacterial TA systems are commonly considered as stress-responsive genetic modules. However, molecule screening for activation of toxin in TA system is available as development of antimicrobial agents. In addition, cytotoxic effect induced by toxin is used as effective cloning method with antitoxic effect of antitoxin; consequently cells containing cloning vector inserted a target gene can survive and false-positive transformants are removed. Also, TA system is applicable to efficient single protein production in biotechnology industry because toxins that are site-specific ribonuclease inhibit protein synthesis except for target protein. Furthermore, some TA systems that induce apoptosis in eukaryotic cells such as cancer cells or virus-infected cells would have a wide range of applications in eukaryotes, and it will lead to new ways of treating human disease. In this review, we summarize the current knowledge on bacterial TA systems and their applications.